COMMERCIAL IN CONFIDENCE

Submitted to:

Gemma Keenan HaskoningDHV UK Ltd. 74/2 Commercial Quay Commercial Street Leith Edinburgh EH6 6LX Submitted by:

Richard Barham Subacoustech Environmental Ltd Unit 2, Muira Industrial Estate William Street Southampton SO14 5QH

Website: www.royalhaskoningdhv.com

Website: www.subacoustech.com

Underwater noise modelling at the Teesside A offshore wind farm, Dogger Bank

R Barham, T Mason

28 October 2019

Subacoustech Environmental Report No. P260R0102

Document No.	Date	Written	Approved	Distribution
P260R0101	13/09/2019	R Barham	S East	G Keenan (HaskoningDHV)
P260R0102	28/10/2019	R Barham	T Mason	G Keenan (HaskoningDHV)

This report is a controlled document. The report documentation page lists the version number, record of changes, referencing information, abstract and other documentation details.

List of contents

Li	st of co	ntent	S	1
1	Intro	ducti	ion	1
2	Asse	essm	ent criteria	2
	2.1	Bac	kground	2
	2.2	Crite	eria from the NPL report	2
	2.3	Impa	acts on marine mammals	3
	2.3.	1	Weighted source levels	5
	2.4	Impa	acts on fish	6
3	Mod	elling	g methodology	9
	3.1	NPL	. modelling	9
	3.2	Sub	acoustech Environmental modelling	9
	3.2.1	1	Modelling locations	9
	3.2.2	2	Modelling input parameters	10
	3.3	Res	ults of original and revised modelling comparison	.12
	3.3.1	1	Model comparison	.12
	3.3.2	2	Comparison with data from the NPL report	15
4	Mod	elling	g results	.17
	4.1	Prev	viously considered criteria	.17
	4.2	Mar	ine mammals	22
	4.2.1	1	Southall et al. (2019) impact ranges	22
	4.3	Fish		28
	4.3.	1	Popper et al. (2014) impact ranges	28
5	Othe	er noi	se sources	32
	5.1	Nois	e making activities	32
	5.2	Ope	rational WTG noise	34
6	Sum	imary	/ and conclusions	36
R	eferenc	es		37
A	opendix	A	Additional impact ranges	39
R	eport do	ocum	entation page	.44

i

1 Introduction

Underwater noise propagation modelling was carried out by the National Physical Laboratory (NPL) (Theobald *et al.* 2013, hereafter the "NPL Report") to assess the effects of noise from the construction of the Teesside A offshore wind farm, part of the Dogger Bank development area.

Since the NPL modelling was completed, new noise thresholds and criteria have been developed by Southall *et al.* (2019) for impacts on marine mammals and Popper *et al.* (2014) for impact on fish. To obtain impact ranges using these criteria at Teesside A, additional modelling has been carried out by Subacoustech Environmental.

The modelling undertaken by Subacoustech Environmental has sought to replicate the model of modelling by NPL as closely as possible, capable of providing equivalent results for given inputs and scenarios. Initially Subacoustech's modelling was run to verify that results closely matched the NPL predicted ranges under the original scenarios. The results were then re-analysed to produce new ranges based on the up-to-date criteria.

In addition to these new criteria, additional modelling was carried out by Subacoustech Environmental to estimate noise levels produced by larger hammers using greater blow energies than those previously modelled. The noise from other related noise sources including cable laying, trenching, rock placement, vessel noise, and operational wind turbine generators (WTGs) have also been considered.

A map of the Teesside A site as part of the larger Dogger Bank development area, including the modelling locations, is shown in Figure 1-1.

This report assumes familiarity with basic underwater acoustical concepts and metrics.

Figure 1-1 Overview map showing the Teesside A windfarm boundary and the approximate locations used for the modelling

2 Assessment criteria

2.1 Background

Over the past 20 years it has become increasingly evident that noise from human activities in and around underwater environments have the potential to cause adverse impacts on marine species in the area. The extent to which intense underwater sound might cause an adverse impact to a species is dependent upon the incident sound level, sound frequency, duration of exposure and/or repetition rate of an impulsive sound (Hastings and Popper, 2005), as well as the sensitivity of the species. As a result, scientific interest in the hearing abilities of aquatic animal species has increased. Studies are primarily based on evidence from high intensity sources of underwater noise such as blasting or impact piling, as these sources are likely to have the greatest environmental impact and the clearest observable effects, although there has been more interest in chronic noise exposure over the last ten years.

For this study, various criteria have been used, covering the values used in the NPL Report for comparison and the more up to date studies from Southall *et al.* (2019) for marine mammals and Popper *et al.* (2014) for fish.

2.2 Criteria from the NPL report

The following criteria were used in the NPL report and have been used to give a direct comparison between the NPL modelling and the INSPIRE modelling carried out for this study.

- Southall et al. (2007) for species of cetaceans and pinnipeds;
- Lucke et al. (2009) for harbour porpoises;
- Popper et al. (2006) and Carlson et al. (2007) for injury in fish using SPL_{peak};
- Halvorsen et al. (2011) for injury in fish using SEL_{cum}; and
- McCauley et al. (2000) and Pearson et al. (1992) for behavioural response in fish.

These criteria are summarised in Table 2-1 to Table 2-5 as they appear in the NPL report.

Effect	Criteria	
Instantonoous injuny / DTS	200 dB re 1 µPa (SPL _{peak})	
Instantaneous Injury / FTS	179 dB re 1 µPa ² s (SEL _{ss})	
TTC / flooing rooponoo	194 dB re 1 µPa (SPL _{peak})	
1137 lieeling response	164 dB re 1 µPa ² s (SEL _{ss})	
Dessible avaidance from area	168 dB re 1 μPa (SPL _{peak})	
	145 dB re 1 µPa ² s (SEL _{ss})	

 Table 2-1 Criteria for assessing harbour porpoise impacts as presented in the NPL report. These have been derived from Lucke et al. (2009)

Effect	Criteria	
Instantanoous injuny / PTS	230 dB re 1 µPa (SPL _{peak})	
Instantaneous Injury / FTS	198 dB re 1 µPa ² s (M _{mf} -weighted SEL _{ss})	
TTS / flooing rooponoo	224 dB re 1 µPa (SPL _{peak})	
r i S / neering response	183 dB re 1 µPa ² s (M _{mf} -weighted SEL _{ss})	
Likely avoidance from area	170 dB re 1 µPa²s (SEL _{ss})	
Possible avoidance from area	160 dB re 1 µPa ² s (SEL _{ss})	

 Table 2-2 Criteria for assessing mid-frequency (MF) cetacean impacts (including bottlenose dolphins) as presented in the NPL report. These have been derived from Southall et al. (2007)

Effect	Criteria		
Instantanoous injun/ / DTS	230 dB re 1 µPa (SPL _{peak})		
instantaneous injury / PTS	198 dB re 1 µPa ² s (M⊮-weighted SELss)		
TTS / flooing roopono	224 dB re 1 µPa (SPL _{peak})		
1137 lieeling response	183 dB re 1 µPa ² s (M _{if} -weighted SEL _{ss})		
Likely avoidance from area	152 dB re 1 µPa²s (SEL _{ss})		
Possible avoidance from area	142 dB re 1 µPa ² s (SEL _{ss})		

 Table 2-3 Criteria for assessing low-frequency (LF) cetacean impacts (including Minke whale) as

 presented in the NPL report. These have been derived from Southall et al. (2007)

Effect	Criteria	
Instantoneous injuny / DTS	218 dB re 1 µPa (SPL _{peak})	
Instantaneous Injury / PTS	186 dB re 1 µPa ² s (M _{pw} -weighted SEL _{ss})	
	212 dB re 1 µPa (SPL _{peak})	
115 / neeing response	171 dB re 1 uPa ² s (Mow-weighted SELss)	

 Table 2-4 Criteria for assessing pinnipeds (in water) impacts as presented in the NPL report. These

 have been derived from Southall et al. (2007)

Effect	Criteria	
Instantanagus inium/ / DTS	206 dB re 1 µPa (SPL _{peak})	
Instantaneous Injury / PTS	211 dB re 1 µPa²s (SEL _{cum})	
Possible moderate to strong avoidance	168 – 173 dB re 1 μPa (SPL _{peak})	
Startle response or C-turn reaction	200 dB re 1 µPa (SPL _{peak})	

Table 2-5 Criteria for assessing fish impacts as presented in the NPL report. These have beenderived from Popper et al (2006), Carlson et al. (2007), Halvorsen et al. (2011), McCauley et al.(2000) and Pearson et al. (1992)

2.3 Impacts on marine mammals

The Southall *et al.* (2019) paper on the effects of underwater noise on marine mammals is an update of the previous Southall *et al.* (2007) criteria, and was co-authored by many of the same authors. It gives identical thresholds to those from the NMFS (2018) guidance for marine mammals, although alters the category names (see below).

The Southall *et al.* (2019) guidance groups marine mammals into groups of similar species and applies filters to the unweighted noise to approximate the hearing sensitivity of the wider receptor group. The hearing groups given by Southall *et al.* (2019) are summarised in Table 2-6 and Figure 2-1. Further groups for sirenians and other marine carnivores in water are also given in the guidance but these have not been used in this study as those species are not commonly found in the areas surrounding Dogger Bank.

Hearing group	Example species	Generalised hearing range
Low-frequency cetaceans (LF)	Baleen whales	7 Hz to 35 kHz
High-frequency cetaceans (HF)	Dolphins, Toothed Whales, Beaked Whales, Bottlenose Whales (including Bottlenose Dolphin)	150 Hz to 160 kHz
Very high-frequency cetaceans (VHF)	True Porpoises (including Harbour Porpoise)	275 Hz to 160 kHz
Phocid Carnivores in Water (PCW)	True Seals (including Harbour Seal)	50 Hz to 86 kHz

Table 2-6 Marine mammal hearing groups (from Southall et al. 2019)

Figure 2-1 Auditory weighting functions for low-frequency cetaceans (LF), high-frequency cetaceans (HF), very high-frequency cetaceans (VHF), and phocid carnivores in water (PCW) (from Southall et al. 2019)

It should also be noted that the criteria in NMFS (2018), although numerically identical to those in Southall *et al.*, apply different names to the marine mammal groupings and weightings. For example, the group Southall *et al.* (2019) refers to as high-frequency cetaceans (HF), is referred to in NMFS (2018) as mid-frequency cetaceans (MF), and the group Southall *et al.* (2019) refers to as very high-frequency cetaceans (VHF), is referred to as high-frequency cetaceans (HF) by NMFS (2018). As such, great care should be taken when comparing results using the Southall *et al.* (2019) and NMFS (2018), as well as Southall *et al.* (2007), criteria, especially as the "HF" groupings and criteria describe different species depending on which study is being used. The differences are summarised in Table 2-7.

Southall et al. (2019) hearing group	NMFS (2018) hearing group	
Low-frequency cetaceans (LF)	Low-frequency cetaceans (LF)	
High-frequency cetaceans (HF)	Mid-frequency cetaceans (MF)	
Very high-frequency cetaceans (VHF)	High-frequency cetaceans (HF)	
Phocid carnivores in water (PCW)	Phocid pinnipeds in water (PW)	

 Table 2-7 Summary of the differences in weighting group names between the Southall et al. (2019)

 and NMFS (2018) criteria

The Southall *et al* (2019) criteria has been used for this study as it is a peer-reviewed and published paper in a reputable journal, whereas NMFS (2018) is a guidance document from a government agency and, as such, could be subject to changes at any point.

Southall *et al.* (2019) gives individual criteria based on whether a noise source is considered impulsive or non-impulsive. The study categorises impulsive noises as having high peak sound pressure, short duration, fast rise-time, and broad frequency content at source, and non-impulsive sources as steady-state noise without the other above characteristics. Explosives, impact piling and seismic airguns are considered impulsive noise sources, sonars, vibropiling and other low-level continuous noises are considered non-impulsive. A non-impulsive sound does not necessarily have to have a long duration.

Southall *et al.* (2019) presents single strike, unweighted peak criteria (SPL_{peak}) and cumulative (i.e. more than a single sound impulse) weighted sound exposure criteria (SEL_{cum}) for both permanent

threshold shift (PTS), where unrecoverable hearing damage may occur, and temporary threshold shift (TTS), where a temporary reduction in hearing sensitivity may occur in individual receptors.

As sound pulses, such as those from impact piling, propagate through the environment and dissipate, they also lose their most injurious characteristics (e.g. rapid pulse rise time, high peak sound pressure) and become more like a "non-pulse" at greater distances. This is briefly discussed in Southall *et al.* (2019). Active research is currently underway into identification of the distance at which the pulse can be considered effectively non-impulsive (Hastie *et al.* 2019). Although the situation is complex, the paper reported that most of the signals analysed (piling and seismic sources) crossed the threshold defined by Hastie *et al.* (2019) associated with impulsive noise for rapid rise time and high peak pressure at around 3.5 km. The signals beyond this point could be considered non-impulsive, and it is suggested that, beyond this point, signals will increasingly be better represented using the non-impulsive criteria.

Table 2-8 and Table 2-9 present the Southall *et al.* (2019) criteria for onset of risk of PTS and TTS for each of the key marine mammal hearing groups for impulsive and non-impulsive sources. In addition, single strike SEL values (SEL_{ss}) for each of the SEL_{cum} criteria have been included to aid with the assessment. These are presented in Appendix A.

Impulsive noise	PTS c	riteria	TTS criteria	
Group	SEL _{cum} (weighted) dB re 1 µPa²s	SPL _{peak} (unweighted) dB re 1 µPa	SEL _{cum} (weighted) dB re 1 µPa ² s	SPL _{peak} (unweighted) dB re 1 μPa
Low-frequency cetaceans (LF)	183	219	168	213
High-frequency cetaceans (HF)	185	230	170	224
Very high-frequency cetaceans (VHF)	155	202	140	196
Phocid carnivores in water (PCW)	185	218	170	212

Table 2-8 Assessment criteria for marine mammals from Southall et al. (2019) for impulsive noise

Non-impulsive noise	PTS criteria	TTS criteria	
Group	SEL _{cum} (weighted) dB re 1 µPa ² s	SEL _{cum} (weighted) dB re 1 µPa ² s	
Low-frequency cetaceans (LF)	199	179	
High-frequency cetaceans (HF)	198	178	
Very high-frequency cetaceans (VHF)	173	153	
Phocid carnivores in water (PCW)	201	181	

Table 2-9 Assessment criteria for marine mammals from Southall et al. (2019) for non-impulsive noise

2.3.1 <u>Weighted source levels</u>

To undertake the modelling for the Southall *et al.* (2019) criteria, with regards to the weighted SEL_{cum} criteria, the SEL_{ss} source levels were first adjusted using the auditory weighting functions shown in Figure 2-1. This significantly alters the source level for each functional group as shown in Figure 2-2. The equivalent 4000 kJ and 5400 kJ source spectra are not shown as they are visually identical to those for 3000 kJ (with an altered source level).

Noise from impact piling is predominantly low frequency in nature and reduces significantly at frequencies above 1 kHz. The impact piling source levels for monopiles using a 3000 kJ hammer blow energy given as 1/3 octave spectra in Figure 2-2 show that the weighting only makes a modest

difference to source levels for LF cetaceans when weightings are applied and a significant reduction for other hearing groups.

Figure 2-2 Unweighted and Southall et al. (2019) weighted SEL monopile impact piling source level third octave values for LF, HF, VHF and PCW hearing groups for a 3000 kJ hammer

2.4 Impacts on fish

The effects of noise on fish have been assessed using criteria from Popper *et al.* (2014), which gives specific criteria for mortality and potential mortal injury, recoverable injury and TTS, masking and behaviour from various stimuli, including impact piling. Species of fish are grouped by whether they have a swim bladder and whether that swim bladder is involved in its hearing. The criteria are given as unweighted SPL_{peak}, and SEL_{cum} values and are summarised in Table 2-10 for impact piling and Table 2-11 for continuous noise sources.

Impost piling	Mortality & potential	Impairment		
impact plling	mortal injury	Recoverable injury	TTS	
Fish: no swim bladdor	> 219 dB SEL _{cum}	> 216 dB SEL _{cum}		
FISH. HO SWITT DIAUGEI	> 213 dB SPL _{peak}	> 213 dB SPL _{peak}	>> 100 UD SELcum	
Fish: swim bladder not	210 dB SEL _{cum}	203 dB SEL _{cum}		
involved in hearing	> 207 dB SPL _{peak}	> 207 dB SPL _{peak}	> 180 UB SELcum	
Fish: swim bladder	207 dB SEL _{cum}	203 dB SEL _{cum}		
involved in hearing	> 207 dB SPL _{peak}	> 207 dB SPL _{peak}		
involved in hearing	> 207 dB SELcum > 207 dB SPLpeak	> 207 dB SPLpeak	186 dB SEL _{cum}	

Table 2-10 Assessment criteria for species of fish from Popper et al. (2014) for impact piling noise

Shipping and	Impairment				
continuous sounds	Recoverable injury	TTS			
Fish: swim bladder involved in hearing	170 dB RMS for 48h	158 dB RMS for 12h			

 Table 2-11 Assessment criteria for species of fish from Popper et al. (2014) for shipping and continuous sounds

Subacoustech Environmental Ltd. Document Ref: P260R0102

Where insufficient data is available (which is the case for masking and behavioural effects from impact piling), qualitative criteria have been given, summarising the effect of the noise as having either a high, moderate or low effect on an individual in either the near-field (tens of metres), intermediate-field (hundreds of metres) or far-field (thousands of metres). This also includes information for masking and behavioural effect. These qualitative effects are reproduced in Table 2-12 and Table 2-13.

Impact piling	Mortality and potential mortal injury	Recoverable injury	TTS	Masking	Behaviour
Fish: no Swim bladder	See Table 2-10	See Table 2-10	See Table 2-10	(N) Moderate (I) Low (F) Low	(N) High (I) Moderate (F) Low
Fish: swim bladder not involved in hearing	See Table 2-10	See Table 2-10	See Table 2-10	(N) Moderate (I) Low (F) Low	(N) High (I) Moderate (F) Low
Fish: swim bladder involved in hearing	See Table 2-10	See Table 2-10	See Table 2-10	(N) High (I) High (F) Moderate	(N) High (I) High (F) Moderate

Table 2-12 Summary of the qualitative effects on fish from impact piling noise from Popper et al.(2014) (N=Near field, I=Intermediate field, F=Far field)

Shipping and continuous sounds	Mortality and potential mortal injury	Recoverable injury	TTS	Masking	Behaviour
Fish: no Swim bladder	(N) Low (I) Low (F) Low	(N) Low (I) Low (F) Low	(N) Moderate (I) Low (F) Low	(N) High (I) High (F) Moderate	(N) Moderate (I) Moderate (F) Low
Fish: swim bladder not involved in hearing	(N) Low (I) Low (F) Low	(N) Low (I) Low (F) Low	(N) Moderate (I) Low (F) Low	(N) High (I) High (F) Moderate	(N) Moderate (I) Moderate (F) Low
Fish: swim bladder involved in hearing	(N) Low (I) Low (F) Low	See Table 2-11	See Table 2-11	(N) High (I) High (F) High	(N) High (I) Moderate (F) Low

Table 2-13 Summary of the qualitative effects on fish from impact piling noise from Popper et al.(2014) (N=Near field, I=Intermediate field, F=Far field)

Both a fleeing animal and stationary animal model have been used for assessing the SEL_{cum} criteria for fish. It is recognised that there is limited evidence for fish fleeing from high noise sources in the wild and it would reasonably be expected that the reaction would differ between species. Most species are likely to move away from a sound that is loud enough to cause harm (Dahl *et al.*, 2015; Popper *et al.*, 2014), some may seek protection in the sediment and others may dive deeper in the water column. The flee speed chosen for this study of 1.5 ms⁻¹ is relatively slow in relation to the data in Hirata (1999) and thus is considered somewhat conservative.

Although it is feasible that some species will not flee, those that are likely to remain are thought more likely to be benthic species or species without a swim bladder; these are the least sensitive species. For example, from Popper *et al.* (2014): "There is evidence (e.g. Goertner *et al.*, 1994; Stephenson *et al.*, 2010; Halvorsen *et al.*, 2012) that little or no damage occurs to fishes without a swim bladder except at very short ranges from an in-water explosive event. Goertner (1978) showed that the range from an explosive event over which damage may occur to a non-swim bladder fish is in the order of 100 times less than that for swim bladder fish."

Stationary animal modelling has been included in this study, based on research from Hawkins *et al.* (2014). However, basing the assessment on a stationary (zero flee speed) receptor is likely to greatly overestimate the potential risk to fish species, especially when considering the precautionary nature of the parameters already built into the cumulative exposure model.

3 Modelling methodology

3.1 NPL modelling

The original modelling for Teesside A was undertaken by NPL. The modelling utilised an energy flux solution by Weston (1976), capable of calculation of underwater noise propagation over large distances while accounting for range-dependent bathymetry and frequency-dependent absorption.

21 locations were modelled by NPL, covering the extents of the Teesside A site, and for each location pile driving noise was modelled for a hammer operating at up to 3000 kJ.

The model used by NPL is not openly available. As such, Subacoustech Environmental have used a different but comparable modelling method.

3.2 Subacoustech Environmental modelling

The primary goal in respect to the first stage of underwater noise propagation modelling presented in this report was to replicate the results from the NPL modelling as closely as possible, to ensure that the new modelling was consistent with that undertaken previously. Results using the Southall *et al.* (2019) and Popper *et al.* (2014) criteria could then be calculated with confidence.

For the modelling in this study, Subacoustech Environmental have used the INSPIRE modelling software to predict noise levels and impact ranges from piling at Teesside A.

The INSPIRE model (currently version 3.5) is a semi-empirical, depth-dependent, underwater noise propagation model based around a combination of numerical modelling and actual measured data from over 50 datasets of noise propagation from impact piling, mostly surrounding the UK. It is designed to calculate the propagation of noise in shallow, mixed, coastal waters, typical of the conditions around the UK, and is well suited to the Dogger Bank, and Teesside A, region.

The model can provide estimates of unweighted SPL_{peak} (peak sound pressure level), SEL_{ss} (single strike sound exposure level) and SEL_{cum} (cumulative sound exposure level) noise levels as well as various other weighted noise metrics. Calculations are made along 180 equally spaced radial transects, i.e. one every 2°. For each modelling run, a criterion level is specified, allowing a noise contour to be drawn, within which a given effect may occur. These results are then plotted over digital bathymetry data so that impact ranges can be clearly visualised and assessed as necessary.

The methods used within this report meet the requirements set by the NPL Good Practice Guide 133 for underwater noise measurement (Robinson *et al.* 2014).

The approach used considers a wide range of input parameters to ensure as detailed results as possible. The resulting transmission losses have then been compared to (and in some cases extrapolated from) the results given in the NPL report to ensure compatibility. This is discussed further in section 3.3.

3.2.1 <u>Modelling locations</u>

Modelling has been undertaken at two locations over the Teesside A site identified in the NPL Report (locations ID1 and ID5 in Table 4.1). These locations have been chosen as they are used for detailed analysis within the NPL Report. The locations encompass the worst-case scenario and include a wide area of the Teesside A site including both deep and shallow water areas.

The approximate location is given in Figure 1-1 and the coordinates are summarised in Table 3-1.

	ID1	ID5
Latitude	55.11789°N	54.95484°N
Longitude	2.57523°E	3.03186°E
Depth (m)	30	21

Table 3-1 Summary of the modelling locations used for this study

3.2.2 <u>Modelling input parameters</u>

The following environmental and noise source parameters have been assumed in the modelling.

Impact piling

The original modelling by NPL considered four blow energy scenarios: foundations installed using hammers with blow energies of 300, 1900, 2300, and 3000 kJ, covering various soft start and full power scenarios.

The initial (comparative) scenarios have been modelled using the Subacoustech Environmental approach described above for these four blow energies. In addition, two higher maximum blow energies for monopiles, 4000 kJ and 5400 kJ, could potentially be used for installation and the effects of these have been modelled.

Source levels

Underwater noise modelling requires knowledge of the source level, which is the noise level at 1 m from the noise source. The source levels used by NPL for their modelling were not presented in their report. For this study, the source level has been derived by taking the modelled transmission loss of the noise over distance and fitting it to the impact ranges presented previously in the NPL Report. The resulting source levels have been used for calculating the impact ranges for the Southall *et al.* (2019) and Popper *et al.* (2014) criteria. A description for the process of fitting of the data and comparisons to NPL modelling are presented in section 3.3.

The unweighted source levels used for the modelling are provided in Table 3-2 for the maximum blow energies, which are in line with those seen at other, similar scale projects.

	SPL _{peak} source level	SEL _{ss} source level
300 kJ blow energy	233.2 dB re 1 µPa @ 1 m	208.0 dB re 1 µPa²s @ 1 m
400 kJ blow energy	234.8 dB re 1 µPa @ 1 m	209.4 dB re 1 µPa²s @ 1 m
540 kJ blow energy	236.4 dB re 1 µPa @ 1 m	210.8 dB re 1 µPa²s @ 1 m
1900 kJ blow energy	243.2 dB re 1 µPa @ 1 m	217.0 dB re 1 µPa²s @ 1 m
2300 kJ blow energy	244.1 dB re 1 µPa @ 1 m	217.8 dB re 1 µPa²s @ 1 m
3000 kJ blow energy	245.2 dB re 1 µPa @ 1 m	219.0 dB re 1 µPa²s @ 1 m
4000 kJ blow energy	247.0 dB re 1 µPa @ 1 m	220.5 dB re 1 µPa²s @ 1 m
5400 kJ blow energy	248.5 dB re 1 µPa @ 1 m	221.9 dB re 1 µPa ² s @ 1 m

Table 3-2 Summary of the unweighted, single strike, source levels used for modelling in this study

It is important to note that the source level value is theoretical and does not necessarily, nor is intended to, represent the actual noise level at 1 m from the piling operation, which is highly complex close to a large distributed source such as a foundation pile. Its purpose is for the accurate calculation of noise levels at greater distances from the source, to correspond with relevant thresholds, and crucially in this case, to agree with the original NPL modelling.

Frequency content

The size of the pile being installed has been applied to the modelling to estimate the frequency content of the noise. Frequency data was not given in the NPL report. As such, frequency data has been derived using Subacoustech Environmental's noise measurement database. Representative third-octave noise levels dependent on the size of the monopiles for Teesside A have been used for this modelling. The SEL third-octave frequency spectrum levels used for modelling are illustrated in Figure 3-1. The shape of each spectrum is the same for all blow energies at source, with the overall source levels adjusted to account for the changing blow energy.

Figure 3-1 SEL_{ss} third-octave source level frequency spectra used for modelling

Soft start, strike rate, and piling duration

For cumulative SELs (SEL_{cum}), which accounts for the total exposure of a receptor to the noise of the complete piling period, the soft start, strike rate and duration of the piling events have also been considered. Table 4.4 in the NPL Report gives a summary of the parameters used for cumulative strike modelling; the two worst case of these sequences have been considered for this modelling. The parameters used for this modelling, based on those given in the NPL report, are summarised in Table 3-3 below. Sequence 2 assumes 5,000 strikes over 140 minutes and sequence 3 assumes 12,600 strikes over 330 minutes. Sequence 1 is not used in this assessment.

The soft start, or the use of lower hammer energy for an initial period, takes place over the first halfhour of piling, with a blow energy of 10% of maximum, then for the remaining number of strikes the blow energy is 100%. This is a worst-case scenario, as it is likely that the blow energy will ramp up gradually from 10% to 100% after the soft start and for engineering reasons piling would not be at 100% for this extended period. However, information on a ramp-up was unavailable in the NPL report, and thus these worst-case assumptions have been made.

Maximum hammer blow	Percent of maximum blow energy			
energy	10% (soft start)	100%		
3000 kJ blow energy	300 kJ	3000 kJ		
4000 kJ blow energy	400 kJ	4000 kJ		
5400 kJ blow energy	540 kJ	5400 kJ		
Strike rate	1 strike every 3 seconds	1 strike every 1.5 seconds		
Duration	20 minutos	110 minutes (sequence 2)		
Duration	30 minutes	300 minutes (sequence 3)		
Number of strikes	600 strikes	4,400 strikes (sequence 2)		
	600 Strikes	12,000 strikes (sequence 3)		

Table 3-3 Summary of the multiple pulse scenarios used for cumulative SEL modelling

Subacoustech Environmental Ltd. Document Ref: P260R0102

Fleeing receptors

Where the SEL_{cum} results are required, a fleeing animal model has been used. This assumes that the animal exposed to the noise levels will swim away from the source as it occurs. For this, a constant speed of 3.25 ms⁻¹ has been assumed for the low-frequency cetaceans (LF) group (Blix and Folkow, 1995) based on data for Minke whale. All other receptors are assumed to swim at a constant speed of 1.5 ms⁻¹ (Otani *et al.* 2000; Hirata, 1999). These are considered worst-case (i.e. relatively slow, leading to greater calculated exposures) as marine mammals are expected to swim much faster under stress conditions. The modelling assumes that when a fleeing receptor reaches the coast it receives no more noise, as it is likely that it will flee along the coast (rather than staying in a single location at the shore).

Environmental conditions

By inclusion of measured data from similar offshore impact piling events, the INSPIRE model intrinsically accounts for various environmental conditions. Data from the British Geological Survey (BGS) presented as part of the Marine Environmental Mapping Programme (MAREMAP) show that the areas around Teesside A and the Dogger Bank region generally are made up of sand or gravelly sand.

Bathymetry from the European Marine Observation and Data Network (EMODnet) was used for this modelling. Mean tidal depth was used throughout for the bathymetry to match conditions used in the NPL report.

3.3 Results of original and revised modelling comparison

3.3.1 Model comparison

In order to obtain modelling results representative of those produced for the NPL Report, modelling was carried out using the INSPIRE model, using the parameters detailed in the previous section to acquire a transmission loss over multiple transects. These transmission losses were then compared against the results given in the NPL Report. Location ID1 at Teesside A was chosen as a representative modelling location due to its location in the deeper water to the north west of the site.

There was good correlation between the two resultant data sets. Figure 3-2 and Figure 3-3 compare the unweighted noise level plots from the NPL Report and the new Subacoustech modelling at the same scale. It should be noted that although the noise levels do not line up perfectly, the figures do show many of the same features, such as a largely uniform distribution in all directions for the highest noise levels, with larger ranges into the deeper water to the north and northwest and some effects of shallower areas and sandbanks to the south, which reduce noise transmission.

Figure 3-2 SEL_{ss} impact piling noise propagation map for Teesside A location ID1 for a 3000 kJ hammer from the NPL modelling (Figure 4.2 in the NPL report)

Figure 3-3 SEL_{ss} impact piling noise propagation map for Teesside A location ID1 for a 3000 kJ hammer showing the transmission losses predicted for the INSPIRE modelling, the same colour scale from Figure 3-2 has been used to aid comparison

The source level was ascertained by fitting the modelled transmission loss to the impact ranges given in the NPL Report. Figure 3-4 and Figure 3-5 show how the worst-case transect lines up with the higher SPL_{peak} and SEL_{ss} impact ranges given in the NPL Report. A conservative fit to the data has been used so that levels predicted along the worst-case transect intersect with the highest levels reported by NPL. This data is summarised in Table 3-4 and Table 3-5.

Figure 3-4 Level versus range plots showing a comparison between the reported NPL impact ranges and the new modelling fitted to the data (unweighted SPL_{peak})

The idiosyncrasies of any model mean that another model emulating it will have variations, as can be seen in the surrounding figures. Overall the modelled ranges have a good fit, although for safety the model is designed to generally overestimate rather than underestimate.

SPLpeak	Criteria	NPL modelling	INSPIRE worst case
	206 dB re 1 µPa	200 m	280 m
3000 kJ	200 dB re 1 µPa	600 m	640 m
	173 dB re 1 µPa	7.5 to 10.0 km	13 km
	168 dB re 1 µPa	17 to 21.0 km	19 km

Table 3-4 Summary of the maximum modelled SPL_{peak} values compared in Figure 3-4

Figure 3-5 Level versus range plots showing a comparison between the reported NPL impact ranges and the new modelling parameters fitted to the data (unweighted SEL_{ss})

SELss	Criteria	NPL modelling	INSPIRE worst case
	179 dB re 1 µPa²s	700 m	690 m
	164 dB re 1 µPa²s	4.0 to 5.5 km	5.8 km
	145 dB re 1 µPa ² s	22 to 33 km	31 km
3000 kJ	170 dB re 1 μPa²s	2.5 km	2.7 km
	160 dB re 1 µPa²s	6.0 to 8.5 km	9.2 km
	152 dB re 1 µPa²s	13.5 to 18.0 km	19 km
	142 dB re 1 µPa ² s	26.5 to 41.0 km	38 km

Table 3-5 Summary of the maximum modelled SELss values compared in Figure 3-5

3.3.2 Comparison with data from the NPL report

Expanding on the data from the previous section, Table 3-6 and Table 3-7 give summaries of direct comparisons between the modelled impact ranges for all blow energies presented by NPL, and the modelling undertaken by Subacoustech Environmental ("Sub-E") for this report. All the values are either unweighted SPL_{peak} values or unweighted single strike SEL_{ss} values. As stated earlier, where a range of distances are given in the NPL report, the greatest distances have been used to ensure a conservative fit to the data.

It should be noted that the ranges given in the NPL report, and presented below in Table 3-6 and Table 3-7, consider all modelling locations at Teesside A, whereas the Subacoustech Environmental comparison modelling has only considered the a single location (ID1).

Overall, there is a good level of correlation between the two datasets and the results from the INSPIRE model, with the NPL model having a greater variability along the transect than INSPIRE, which produces a smoother curve. This does lead to larger calculated effect ranges in some locations for INSPIRE's worst case. Small ranges of the order of hundreds of metres or less, will always produce significant variability as all models are designed for long-range accuracy, as this is where the majority of thresholds are reached and where receptors are present. The chosen approach provides a good substitute for the NPL modelling in calculating the Southall *et al.* (2019) and Popper *et al.* (2014) criteria.

Unwtd	300	300 kJ		1900 kJ hammer		2300 kJ hammer		3000 kJ hammer	
SPI	hammer energy		ene	ergy	ene	ergy	ene	ergy	
3F Lpeak	NPL	INSPIRE	NPL	INSPIRE	NPL	INSPIRE	NPL	INSPIRE	
206 dB	100 m	50 m	200 m	210 m	200 m	240 m	200 m	280 m	
200 dB	100 m	120 m	500 m	490 m	500 m	550 m	600 m	640 m	
173 dB	3.0 to 3.8 km	4.3 km	6.5 to 8.0 km	11 km	7.0 to 10.0 km	12 km	7.5 to 10.0 km	13 km	
168 dB	6.6 to 8.5 km	7.2 km	14.0 to 17.5 km	16 km	15.5 to 19.0 km	17 km	17.0 to 21.0 km	19 km	

Table 3-6 Comparison between ranges to unweighted SPL_{peak} values given in the NPL Report and the comparative modelling undertaken by Subacoustech Environmental (INSPIRE) for location ID1 at Teesside A

The chosen approach provides a good substitute for the NPL modelling in calculating the Southall *et al.* (2019) and Popper *et al.* (2014) criteria. The greatest variations are in the SPL_{peak} modelled ranges but the SEL ranges are more important to the assessment. For the SEL, the majority of INSPIRE calculated ranges are within 10% of the NPL model.

Upwtd	300 kJ hammer		1900 kJ	1900 kJ hammer		2300 kJ hammer		3000 kJ hammer	
SEI	energ		ene	energy		energy		energy	
SELSS	NPL	INSPIRE	NPL	INSPIRE	NPL	INSPIRE	NPL	INSPIRE	
179 dB	100 m	120 m	500 m	510 m	600 m	580 m	700 m	690 m	
164 dB	1.5 km	1.3 km	3.2 to 4.2 km	4.6 km	3.5 to 4.6 km	5.1 km	4.0 to 5.5 km	5.8 km	
145 dB	10.0 to 13.5 km	14 km	20.0 to 28.0 km	27 km	21.0 to 30.0 km	29 km	22.0 to 33.0 km	31 km	
170 dB	600 m	500 m	2.0 km	2.0 km	2.0 km	2.3 km	2.5 km	2.7 km	
160 dB	2.5 km	2.3 km	5.0 to 7.0 km	7.4 km	5.0 to 7.2 km	8.1 km	6.0 to 8.5 km	9.2 km	
152 dB	4.8 to 6.8 km	6.6 km	11.0 to 15.5 km	16 km	12.0 to 17.0 km	17 km	13.5 to 18.0 km	19 km	
142 dB	13.5 to 18.0 km	18 km	23.0 to 35.5 km	33 km	24.0 to 37.5 km	35 km	26.5 to 41.0 km	38 km	

Table 3-7 Comparison between ranges to unweighted SELss values given in the NPL Report and the
comparable modelling undertaken by Subacoustech Environmental (INSPIRE) for location ID1 at
Teesside A

4 Modelling results

The following sections present the modelling impact ranges for the criteria discussed in section 2 at Teesside A.

4.1 Previously considered criteria

Table 4-1 to Table 4-10 present the impact ranges from the INSPIRE modelling considering the single pulse noise criteria used in the NPL report, including the metrics and criteria described in section 2.2. Also included are the results for the 4000 and 5400 kJ hammer energies.

Predicted ranges smaller than 50 m, and areas less than 0.1 km² for single strike criteria and smaller than 100 m for cumulative criteria, have not been presented as the modelling processes are unable to specify that level of accuracy with confidence due to acoustic effects near the source and other noise processes at close range.

Cells marked with a hyphen (300 kJ and 1900 kJ, fish impact ranges) are only used for single strike hammer energies within the soft start period. As such cumulative SELs are not intended to be calculated for them. Also, in certain cases the predicted ranges for 2300 kJ hammer energy are higher than those predicted for 3000 kJ hammer energy, this is due to the assumption that the 2300 kJ hammer is installing pin piles and the 3000 kJ hammer is installing monopiles, which have different frequency components that affect the weighted criteria.

Location IE	01	300 kJ	1900 kJ	2300 kJ	3000 kJ	4000 kJ	5400 kJ
Harbour porp	oise	hammer	hammer	hammer	hammer	hammer	hammer
Impact criter	ion	energy	energy	energy	energy	energy	energy
Instantaneous injury/PTS (SPL _{peak} 200 dB re 1 uPa)	Area (km ²)	0.05	0.77	0.96	1.3	2.1	3.2
	Max (m)	130	500	560	650	820	1000
	Min (m)	120	490	550	640	810	1000
200 00 10 1 μ1 0)	Mean (m)	130	500	560	650	820	1000
Instantanoous	Area (km ²)	0.05	0.83	1.1	1.5	2.4	3.8
	Max (m)	130	520	590	700	880	1100
$170 \text{ dB ro } 1 \text{ uPa}^2 \text{s}$	Min (m)	120	510	580	690	870	1100
179 db le 1 µl a 3)	Mean (m)	130	520	590	700	880	1100
TTS/fleeing	Area (km ²)	0.25	3.8	4.8	6.4	10	15
response	Max (m)	290	1100	1200	1400	1800	2200
(SPL _{peak} 194 dB re	Min (m)	280	1100	1200	1400	1800	2200
1 µPa)	Mean (m)	290	1100	1200	1400	1800	2200
TTS/fleeing	Area (km ²)	5.2	65	80	110	150	200
response	Max (m)	1300	4600	5100	5900	7000	8300
(SELss 164 dB re	Min (m)	1300	4500	5000	5700	6800	7900
1 µPa²s)	Mean (m)	1300	4600	5000	5800	6900	8100
Dessible sysidenes	Area (km ²)	160	780	860	1000	1200	1500
of area (SDI + 169	Max (m)	7300	17000	18000	19000	21000	23000
ro 1 uPo ² c)	Min (m)	6900	15000	15000	17000	18000	20000
10 i µi a 3)	Mean (m)	7100	16000	17000	18000	20000	22000
Dessible sysideres	Area (km ²)	540	2000	2200	250	3000	3500
of area (SEL 145	Max (m)	14000	28000	29000	9300	34000	38000
$re_1 u Pa^{2}e^{145}$	Min (m)	12000	23000	24000	8800	27000	29000
ις ι μεα δ	Mean (m)	13000	25000	27000	9000	31000	33000

 Table 4-1 Predicted harbour porpoise impact ranges using criteria derived from Lucke et al. (2009) at
 Increase location ID1

COMMERCIAL IN CONFIDENCE	
Underwater noise modelling at the Teesside A offshore wind farm, Dogger Ban	ık

Location I	05	300 kJ	1900 kJ	2300 kJ	3000 kJ	4000 kJ	5400 kJ
Harbour porp	oise	hammer	hammer	hammer	hammer	hammer	hammer
Impact crite	rion	energy	energy	energy	energy	energy	energy
	Area (km ²)	0.05	0.68	0.86	1.2	1.8	2.8
	Max (m)	130	470	530	620	770	950
200 dB ro 1 uBo)	Min (m)	120	460	520	610	760	940
200 ub le 1 µFa)	Mean (m)	130	470	530	620	770	950
Instantanagua	Area (km ²)	0.05	0.8	1.0	1.4	2.3	3.5
	Max (m)	130	510	570	680	860	1100
$179 \text{ dB re } 1 \mu\text{Pa}^2\text{s}$	Min (m)	120	500	560	670	840	1100
	Mean (m)	130	510	570	680	850	1100
TTS/fleeing	Area (km ²)	0.24	3.4	4.1	5.5	8.5	12
response	Max (m)	280	1000	1200	1300	1700	2000
(SPL _{peak} 194 dB re	Min (m)	270	1000	1100	1300	1600	2000
1 µPa)	Mean (m)	280	1000	1100	1300	1600	2000
TTS/fleeing	Area (km ²)	4.8	53	65	85	120	160
response	Max (m)	1200	4200	4600	5300	6200	7300
(SELss 164 dB re	Min (m)	1200	4100	4500	5200	6000	7000
1 µPa²s)	Mean (m)	1200	4100	4600	5200	6100	7100
Bassible avaidance	Area (km ²)	120	570	630	730	910	1100
of area (SPI 168	Max (m)	6200	14000	15000	17000	19000	21000
ro 1 uDo ² c)	Min (m)	6000	12000	13000	14000	16000	17000
10 i µi a 3)	Mean (m)	6100	13000	14000	15000	17000	19000
Dessible evoidence	Area (km ²)	410	1600	1800	2000	2400	2900
of area (SEL 145	Max (m)	12000	26000	27000	30000	33000	36000
re 1 μ Pa ² e)	Min (m)	14000	20000	21000	22000	24000	26000
ις ιμια δ	Mean (m)	15000	23000	24000	25000	28000	30000

 Table 4-2 Predicted harbour porpoise impact ranges using criteria derived from Lucke et al. (2009) at
 Iocation ID5

Location I	01	300 kJ	1900 kJ	2300 kJ	3000 kJ	4000 kJ	5400 kJ
Mid-frequency ce	etaceans	hammer	hammer	hammer	hammer	hammer	hammer
Impact crite	rion	energy	energy	energy	energy	energy	energy
Instantanaqua	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
230 dB ro 1 uPo)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
250 ub le 1 µl aj	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Instantaneous	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
injury/PTS (M _{mf}	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
SEL _{ss} 198 dB re 1 µPa²s)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS/fleeing	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
response	Max (m)	< 50	< 50	< 50	< 50	< 50	50
(SPL _{peak} 224 dB re	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
1 µPa)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS/fleeing	Area (km ²)	< 0.01	0.03	0.06	0.06	0.09	0.13
response	Max (m)	< 50	100	140	140	170	210
(Mmf SELss 183 dB	Min (m)	< 50	90	130	130	160	200
re 1 µPa²s)	Mean (m)	< 50	90	140	140	170	210
	Area (km ²)	0.8	13	16	22	33	49
Likely avoidance of	Max (m)	510	2000	2300	2700	3300	4000
alea (SELss 170 le $1 \mu Po^2 c$)	Min (m)	500	2000	2300	2700	3300	3900
1 µPa²s)	Mean (m)	510	2000	2300	2700	3300	4000
Dessible susideres	Area (km ²)	17	170	200	250	340	450
Possible avoidance	Max (m)	2300	7500	8200	9300	11000	12000
or area (SELss 160 $r_0.1 \text{ u} \text{ Po}^{2}_{20}$)	Min (m)	2300	7200	7800	8800	10000	11000
ie i µra-sj	Mean (m)	2300	7300	8000	9000	10000	12000

 Table 4-3 Predicted mid-frequency cetacean impact ranges using criteria derived from Southall et al.

 (2007) at location ID1

	5	300 k l	1000 k l	2300 k l	3000 k l	4000 k l	5400 k l
Mid-frequency ce	taceans	hammer	hammer	hammer	hammer	hammer	hammer
Impact crite	rion	energy	energy	energy	energy	energy	energy
la stanta sa sua	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
220 dB ro 1 uPo)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
230 ub le 1 µraj	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Instantaneous	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
injury/PTS (M _{mf} SEL _{ss} 198 dB re 1 µPa ² s)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS/fleeing	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
response	Max (m)	< 50	< 50	< 50	< 50	< 50	50
(SPL _{peak} 224 dB re	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
1 µPa)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS/fleeing	Area (km ²)	< 0.01	0.03	0.06	0.05	0.09	0.13
response	Max (m)	< 50	100	140	130	170	210
(M _{mf} SEL _{ss} 183 dB	Min (m)	< 50	90	130	120	160	200
re 1 µPa²s)	Mean (m)	< 50	100	140	130	170	210
Likely evoidence of	Area (km ²)	0.77	11	14	19	29	41
area (SEL 170 ro	Max (m)	500	1900	2100	2500	3000	3700
$1 \mu D 2 c$	Min (m)	490	1900	2100	2500	3000	3600
i µPa²s)	Mean (m)	500	1900	2100	2500	3000	3600
Dessible evoidence	Area (km ²)	15	130	160	200	260	340
of area (SEL 160	Max (m)	2200	6600	7200	8200	9500	11000
$re_1 u Pa^{2}e$	Min (m)	2200	6400	6900	7700	8800	9900
ις ι μεα δ	Mean (m)	2200	6500	7100	7900	9200	10000

Table 4-4 Predicted mid-frequency cetacean impact ranges using criteria derived from Southall et al.(2007) at location ID5

Location IE	D1	300 kJ	1900 kJ	2300 kJ	3000 kJ	4000 kJ	5400 kJ
Low-frequency ce	etaceans	hammer	hammer	hammer	hammer	hammer	hammer
Impact crite	rion	energy	energy	energy	energy	energy	energy
Instantoneous	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
230 dB ro 1 uPo)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
250 ub le 1 µl aj	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Instantaneous	Area (km ²)	< 0.01	< 0.01	< 0.01	0.01	0.01	0.01
injury/PTS (M _{lf}	Max (m)	< 50	< 50	< 50	50	60	70
SEL _{ss} 198 dB re 1 µPa²s)	Min (m)	< 50	< 50	< 50	< 50	50	60
	Mean (m)	< 50	< 50	< 50	< 50	60	70
TTS/fleeing	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
response	Max (m)	< 50	< 50	< 50	< 50	< 50	50
(SPL _{peak} 224 dB re	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
1 µPa)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS/fleeing	Area (km ²)	0.02	0.24	0.31	0.44	0.7	1.1
response	Max (m)	80	280	320	380	480	590
(Mlf SELss 183 dB re	Min (m)	70	270	310	370	470	580
1 µPa²s)	Mean (m)	80	280	320	380	480	590
	Area (km ²)	130	760	860	1000	1300	1500
	Max (m)	6600	16000	18000	19000	21000	24000
area (SELss 152 re $1 \mu Po^2 c$)	Min (m)	6400	15000	16000	17000	19000	20000
1 µra 5)	Mean (m)	6500	16000	17000	18000	20000	22000
Dessible susideres	Area (km ²)	880	2800	3100	3500	4000	4600
ef area (SEL 142	Max (m)	18000	33000	35000	38000	41000	45000
$r_{o} 1 \mu Po^{2}c$	Min (m)	16000	26000	27000	29000	31000	32000
ie i µra-sj	Mean (m)	17000	30000	31000	33000	36000	38000

 Table 4-5 Predicted low-frequency cetacean impact ranges using criteria derived from Southall et al.

 (2007) at location ID1

Location I)5	300 k.J	1900 k.J	2300 k.l	3000 k.J	4000 k.l	5400 k.l
Low-frequency ce	etaceans	hammer	hammer	hammer	hammer	hammer	hammer
Impact crite	rion	energy	energy	energy	energy	energy	energy
Instantanasus	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
220 dB ro 1 uBo)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
250 ub le 1 µFa)	Mean (m)	< 50	< 50	< 50	energyenergyenergyen < 0.01 < 0.01 < 0.01 < 10 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 300 < 400 470 55 360 460 44 370 470 55 790 990 11 17000 20000 222 15000 16000 18000 2900 3400 4	< 50	
Instantaneous	Area (km ²)	< 0.01	< 0.01	< 0.01	0.01	0.01	0.01
injury/PTS (Mif	Max (m)	< 50	< 50	< 50	50	50	70
SEL _{ss} 198 dB re 1	Min (m)	< 50	< 50	< 50	< 50	< 50	60
μPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	70
TTS/fleeing	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
response	Max (m)	< 50	< 50	< 50	< 50	< 50	50
(SPL _{peak} 224 dB re	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
1 µPa)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS/fleeing	Area (km ²)	0.02	0.22	0.29	0.42	0.68	1.0
response	Max (m)	80	270	310	370	470	580
(MIf SELss 183 dB re	Min (m)	70	260	300	360	460	470
1 µPa²s)	Mean (m)	80	270	310	370	470	580
	Area (km ²)	110	580	660	790	990	1200
Likely avoidance of	Max (m)	5900	15000	16000	17000	20000	22000
$1 \mu Po^{2}c$	Min (m)	5700	13000	13000	15000	16000	18000
τµPa²s)	Mean (m)	5800	14000	15000	16000	18000	20000
Dessible susideres	Area (km ²)	680	2300	2600	2900	3400	4000
Possible avoidance	Max (m)	16000	32000	33000	36000	39000	43000
$r_{o} = 1 \cup P_{o}^{2} r_{o}$	Min (m)	14000	23000	24000	26000	27000	29000
ie i µra sj	Mean (m)	15000	27000	28000	30000	33000	35000

Table 4-6 Predicted low-frequency cetacean impact ranges using criteria derived from Southall et al.(2007) at location ID5

Location I	D1	300 kJ	1900 kJ	2300 kJ	3000 kJ	4000 kJ	5400 kJ
Pinnipeds (in v	water)	hammer	hammer	hammer	hammer	hammer	hammer
Impact crite	rion	energy	energy	energy	energy	energy	energy
Instantanasus	Area (km ²)	< 0.01	0.01	0.01	0.01	0.02	0.03
	Max (m)	< 50	50	60	60	80	100
218 dB ro 1 uPo)	Min (m)	< 50	< 50	50	50	70	90
218 dB re 1 µPa)	Mean (m)	< 50	< 50	60	60	80	100
Instantaneous	Area (km ²)	< 0.01	0.03	0.07	0.06	0.1	0.14
injury/PTS (M _{pw}	Max (m)	< 50	110	150	140	180	220
SELss 186 dB re 1	Min (m)	< 50	100	140	130	170	210
μPa²s)	Mean (m)	< 50	110	150	140	180	220
TTS/fleeing	Area (km ²)	0.01	0.03	0.03	0.05	0.09	0.12
response	Max (m)	50	100	110	130	170	200
(SPL _{peak} 212 dB re	Min (m)	< 50	90	100	120	160	190
1 µPa)	Mean (m)	< 50	100	110	130	170	200
TTS/fleeing	Area (km ²)	0.2	3.3	6.4	6.0	9.3	14
response	Max (m)	260	1000	1400	1400	1700	2100
(Mpw SELss 171 dB	Min (m)	250	1000	1400	1400	1700	2100
re 1 µPa²s)	Mean (m)	260	1000	1400	1400	1700	2100

 Table 4-7 Predicted pinniped (in water) impact ranges using criteria derived from Southall et al. (2007)

 at location ID1

r							
Location I	D5	300 kJ	1900 kJ	2300 kJ	3000 kJ	4000 kJ	5400 kJ
Pinnipeds (in v	water)	hammer	hammer	hammer	hammer	hammer	hammer
Impact crite	rion	energy	energy	energy	energy	energy	energy
Instantoneous	Area (km ²)	< 0.01	0.01	0.01	0.01	0.02	0.02
	Max (m)	< 50	50	60	60	80	90
218 dB ro 1 uBo)	Min (m)	< 50	< 50	50	50	70	80
Z18 dB re 1 µPa)	Mean (m)	< 50	< 50	60	60	80	90
Instantaneous	Area (km ²)	< 0.01	0.03	0.07	0.06	0.09	0.14
injury/PTS (M _{pw}	Max (m)	< 50	110	150	140	170	220
SELss 186 dB re 1	Min (m)	< 50	100	140	130	160	210
µPa²s)	Mean (m)	< 50	110	150	140	170	220
TTS/fleeing	Area (km ²)	0.01	0.03	0.03	0.05	0.08	0.12
response	Max (m)	50	100	110	130	160	200
(SPLpeak 212 dB re	Min (m)	< 50	90	100	120	150	190
1 µPa)	Mean (m)	< 50	100	110	130	160	200
TTS/fleeing	Area (km ²)	0.19	3.1	5.9	5.5	8.5	13
response	Max (m)	250	1000	1400	1300	1700	2000
(Mpw SELss 171 dB	Min (m)	240	990	1400	1300	1600	2000
re 1 µPa²s)	Mean (m)	250	990	1400	1300	1600	2000

Table 4-8 Predicted pinniped (in water) impact ranges using criteria derived from Southall et al. (2007)at location ID5

Location I	D1	300 kJ	1900 kJ	2300 kJ	3000 kJ	4000 kJ	5400 kJ
Fish		hammer	hammer	hammer	hammer	hammer	hammer
Impact crite	rion	energy	energy	energy	energy	energy	energy
Instantonagua	Area (km ²)	0.01	0.14	0.19	0.25	0.42	0.62
	Max (m)	60	220	250	290	370	450
206 dB ro 1 uPo)	Min (m)	50	210	240	280	360	440
200 ub le 1 µFa)	Mean (m)	60	220	250	290	370	450
	Area (km ²)	-	-	< 0.01	< 0.01	< 0.01	< 0.01
$PIS (SEL_{cum} ZII)$ dPro 1 (Po2o)	Max (m)	-	-	< 100	< 100	< 100	< 100
Sequence 2	Min (m)	-	-	< 100	< 100	< 100	< 100
	Mean (m)	-	-	< 100	< 100	< 100	< 100
	Area (km ²)	-	-	< 0.01	< 0.01	< 0.01	< 0.01
PIS (SELcum ZII) dPro 1 (Po2o)	Max (m)	-	-	< 100	< 100	< 100	< 100
dB re 1 µPa-s) –	Min (m)	-	-	< 100	< 100	< 100	< 100
Sequence S	Mean (m)	-	-	< 100	< 100	< 100	< 100
Possible moderate	Area (km ²)	56	380	430	510	650	810
to strong avoidance	Max (m)	4300	11000	12000	13000	15000	1700
(upper SPLpeak 173	Min (m)	4200	10000	11000	12000	14000	1500
dB re 1 µPa)	Mean (m)	4200	11000	12000	13000	14000	16000
Possible moderate	Area (km ²)	160	780	860	1000	1200	1500
to strong avoidance	Max (m)	7300	17000	18000	19000	21000	23000
(lower SPLpeak 168	Min (m)	6900	15000	15000	17000	18000	20000
dB re 1 µPa)	Mean (m)	7100	16000	17000	18000	20000	22000
Startle response or	Area (km ²)	0.05	0.77	0.96	1.3	2.1	3.2
C-turn reaction	Max (m)	130	500	560	650	820	1000
(SPLpeak 200 dB re	Min (m)	120	490	550	640	810	1000
1 µPa)	Mean (m)	130	500	560	650	820	1000

 Table 4-9 Predicted fish impact ranges using criteria derived from Popper et al. (2006), Carlson et al. (2007), Halvorsen et al (2011), McCauley et al. (2000), and Pearson et al (1992) at location ID1

COMMERCIAL IN CONFIDENCE
Underwater noise modelling at the Teesside A offshore wind farm, Dogger Bank

Location IE Fish	05	300 kJ	1900 kJ	2300 kJ	3000 kJ	4000 kJ	5400 kJ
Impact crite	rion	energy	energy	energy	energy	energy	energy
	Area (km ²)	0.01	0.14	0.17	0.24	0.37	0.56
	Max (m)	60	220	240	280	350	430
INJURY/PIS (SPLpeak	Min (m)	50	210	230	270	340	420
206 db le 1 µPa)	Mean (m)	60	220	240	280	350	430
	Area (km ²)	-	-	< 0.01	< 0.01	< 0.01	< 0.01
dB re 1 µPa ² s) – Sequence 2	Max (m)	-	-	< 100	< 100	< 100	< 100
	Min (m)	-	-	< 100	< 100	< 100	< 100
	Mean (m)	-	-	< 100	< 100	< 100	< 100
PTS (SEL _{cum} 211	Area (km ²)	-	-	< 0.01	< 0.01	< 0.01	< 0.01
	Max (m)	-	-	< 100	< 100	< 100	< 100
Sequence 3	Min (m)	-	-	< 100	< 100	< 100	< 100
Dequence J	Mean (m)	-	-	< 100	< 100	< 100	< 100
Possible moderate	Area (km ²)	44	270	310	370	470	590
to strong avoidance	Max (m)	3800	9700	10000	11000	13000	15000
(upper SPLpeak 173	Min (m)	3700	8900	9500	10000	11000	13000
dB re 1 µPa)	Mean (m)	3800	9300	10000	11000	12000	14000
Possible moderate	Area (km ²)	120	570	630	730	910	1100
to strong avoidance	Max (m)	6200	14000	15000	17000	19000	21000
(lower SPL _{peak} 168	Min (m)	6000	12000	13000	14000	16000	17000
dB re 1 µPa)	Mean (m)	6100	13000	14000	15000	17000	19000
Startle response or	Area (km ²)	0.05	0.68	0.86	1.2	1.8	2.8
C-turn reaction	Max (m)	130	470	530	620	770	950
(SPLpeak 200 dB re	Min (m)	120	460	520	610	760	940
1 µPa)	Mean (m)	130	470	530	620	770	950

Table 4-10 Predicted fish impact ranges using criteria derived from Popper et al. (2006), Carlson et al.(2007), Halvorsen et al (2011), McCauley et al. (2000), and Pearson et al (1992) at location ID5

4.2 Marine mammals

4.2.1 Southall et al. (2019) impact ranges

Table 4-11 to Table 4-26 present the impact ranges for the Southall *et al.* (2019) criteria for marine mammals. Predicted ranges smaller than 50 m, and area less than 0.01 km² for single strike criteria, and smaller than 100 m for cumulative criteria, have not been presented as the modelling processes are unable to specify that level of accuracy with confidence due to acoustic effects near the source and other noise processes at close ranges.

The results show that, using the Southall *et al.* (2019) SPL_{peak} criteria, ranges are largely within a few hundred metres, with only the TTS ranges for high-frequency cetaceans extending over 1 km. For the SEL_{cum} criteria, larger ranges are predicted, with PTS for LF cetaceans reaching 8.4 km and TTS for LF cetaceans reaching a maximum range of 32 km for the largest hammer blow energies (5400 kJ) and worst-case ramp-up sequence 3.

In some cases, the increases for some smaller ranges between the 4000 kJ to 5400 kJ hammer are quite significant (see for example Table 4-21). Exposures of this sort will increase rapidly beyond the point that a threshold is reached. For example, where the 4000 kJ hammer does not quite, or only just, reaches the SEL noise threshold, the cumulative SEL range will remain negligible. However, once the SEL noise level is exceeded, the receptor will receive multiple noise exposures from this higher-level pulse and so the exposure increases rapidly.

Additional modelling was carried out for SEL_{ss} noise levels using the Southall *et al.* (2019) weightings and criteria, these are presented in Appendix A.

Low-frequency ceta	aceans (LF)	L	ocation ID	1	Location ID5			
(maximum energy)		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ	
	Area (km ²)	0.01	0.01	0.02	0.01	0.01	0.01	
PTS (Impulsive)	Max (m)	< 50	60	70	< 50	60	70	
(219 dB re 1 µPa)	Min (m)	< 50	60	70	< 50	50	70	
	Mean (m)	< 50	60	70	< 50	60	70	
	Area (km ²)	0.03	0.05	0.08	0.03	0.05	0.08	
Unwtd SPL _{peak} Unwtd SPL _{peak} (213 dB re 1 μPa)	Max (m)	100	130	170	100	130	160	
	Min (m)	100	130	160	100	130	160	
	Mean (m)	100	130	170	100	130	160	

 Table 4-11 Predicted unweighted SPL_{peak} impact ranges for low-frequency cetaceans using criteria

 from Southall et al. (2019) for maximum hammer blow energies

Low-frequency ceta	aceans (LF)	L	ocation ID	1	Location ID5			
(soft start)		300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ	
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
PIS (Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50	
(219 dB re 1 µPa)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50	
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50	
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Unwtd SPL _{peak}	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50	
	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50	
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50	

Table 4-12 Predicted unweighted SPLpeak	impact rang	ges for lo	w-frequency	cetaceans	using ci	riteria
from	Southall et a	al. (2019)) for soft star	t hammer b	low ene	rgies

Low froguency cot	coope (LE)	L	ocation ID	1	Location ID5			
Low-frequency cere	iceans (LF)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ	
Sequence 2 - PTS	Area (km ²)	35	80	150	12	34	74	
(Impulsive)	Max (m)	3900	5800	7800	2500	4200	6100	
Weighted SEL _{cum}	Min (m)	2700	4100	5700	1400	2500	3700	
(183 dB re 1 µPa²s)	Mean (m)	3300	5000	6800	1900	3300	4800	
Sequence 2 - TTS	Area (km ²)	2000	2500	3000	1600	2000	2500	
(Impulsive)	Max (m)	32000	36000	41000	29000	33000	37000	
Weighted SEL _{cum}	Min (m)	20000	22000	23000	17000	18000	20000	
(168 dB re 1 µPa²s)	Mean (m)	25000	28000	31000	22000	25000	28000	
Sequence 3 - PTS	Area (km ²)	39	87	160	13	38	81	
(Impulsive)	Max (m)	4200	6200	8400	2700	4600	6600	
Weighted SEL _{cum}	Min (m)	2800	4200	5800	1400	2500	3700	
(183 dB re 1 µPa ² s)	Mean (m)	3500	5200	7100	2000	3500	5000	
<u>Sequence 3 - TTS</u> (Impulsive) Weighted SEL _{cum}	Area (km ²)	2200	2800	3400	1700	2200	2700	
	Max (m)	35000	41000	46000	31000	35000	39000	
	Min (m)	20000	22000	24000	17000	18000	20000	
(168 dB re 1 µPa²s)	Mean (m)	26000	29000	32000	23000	26000	29000	

Table 4-13 Predicted low-frequency cetacean weighted SEL_{cum} impact ranges (impulsive) using criteria from Southall et al. (2019) assuming a fleeing speed of 3.25 ms⁻¹ for the two piling sequences

Low frequency eats	access (LE)	L	ocation ID	1	L	ocation ID	5
Low-frequency ceta	iceans (LF)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Sequence 2 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(199 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Sequence 2 - TTS	Area (km ²)	210	330	480	120	200	300
(Non-impulsive)	Max (m)	9400	12000	14000	7600	8200	12000
Weighted SELcum	Min (m)	6900	8500	10000	4600	4700	7600
(179 dB re 1 µPa ² s)	Mean (m)	8200	10000	12000	6000	6300	9800
Sequence 3 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SELcum	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(199 dB re 1 µPa²s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
<u>Sequence 3 - TTS</u> (Non-impulsive) Weighted SEL _{cum}	Area (km ²)	230	350	510	130	200	330
	Max (m)	10000	13000	15000	8200	10000	13000
	Min (m)	6900	8600	10000	4700	6100	7700
(179 dB re 1 µPa²s)	Mean (m)	8400	11000	13000	6300	7900	10000

Table 4-14 Predicted low-frequency cetacean weighted SEL_{cum} impact ranges (non-impulsive) using criteria from Southall et al. (2019) assuming a fleeing speed of 3.25 ms⁻¹ for the two piling sequences

High-frequency cetaceans (HF)		L	ocation ID	1	Location ID5			
(maximum energy)		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ	
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
PIS (Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50	
(230 dB re 1 uPa)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50	
(200 00 10 1 µ1 0)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50	
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Unwtd SPL _{peak}	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50	
	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50	
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50	

 Table 4-15 Predicted unweighted SPL_{peak} impact ranges for high-frequency cetaceans using criteria

 from Southall et al. (2019) for maximum hammer blow energies

High-frequency ceta	aceans (HF)	L	ocation ID	1	Location ID5		
(soft star	oft start) 300 kJ		400 kJ	540 kJ	300 kJ	400 kJ	540 kJ
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PIS (Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
(230 dB re 1 uPa)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(200 00 10 1 μ1 0)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
I I S (Impulsive) Unwtd SPL _{peak} (224 dB re 1 uPa)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(221 00 10 1 µ1 0)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50

 Table 4-16 Predicted unweighted SPL_{peak} impact ranges for high-frequency cetaceans using criteria from Southall et al. (2019) for soft start hammer blow energies

High frequency acts		L	ocation ID	1	L	ocation ID	5
Figh-frequency ceta	aceans (nr)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Sequence 2 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(185 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Sequence 2 - TTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(170 dB re 1 µPa²s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Sequence 3 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(185 dB re 1 µPa²s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
<u>Sequence 3 - TTS</u> (Impulsive) Weighted SEL _{cum}	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(170 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100

Table 4-17 Predicted high-frequency cetacean weighted SEL_{cum} impact ranges (impulsive) using criteria from Southall et al. (2019) assuming a fleeing speed of 1.5 ms⁻¹ for the two piling sequences

High frequency est		L	ocation ID	1	Location ID5			
High-frequency ceta		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ	
Sequence 2 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100	
Weighted SELcum	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100	
(198 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100	
Sequence 2 - TTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100	
Weighted SELcum	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100	
(178 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100	
Sequence 3 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100	
Weighted SELcum	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100	
(198 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100	
<u>Sequence 3 - TTS</u> (Non-impulsive) Weighted SEL _{cum}	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100	
	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100	
(178 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100	

Table 4-18 Predicted high-frequency cetacean weighted SEL_{cum} impact ranges (non-impulsive) using criteria from Southall et al. (2019) assuming a fleeing speed of 1.5 ms⁻¹ for the two piling sequences

Very high-frequency	L	ocation ID	1	Location ID5			
(VHF) (maximum	n energy)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
	Area (km ²)	0.73	1.2	1.8	0.66	1.1	1.6
PTS (Impulsive)	Max (m)	480	610	760	460	580	720
(202 dB re 1 uPa)	Min (m)	480	610	760	460	580	720
(202 00 10 1 μ1 0)	Mean (m)	480	610	760	460	580	720
	Area (km ²)	3.7	5.9	8.9	3.3	5.1	7.6
I I S (Impulsive) Unwtd SPL _{peak} (196 dB re 1 uPa)	Max (m)	1100	1400	1700	1000	1300	1600
	Min (m)	1100	1400	1700	1000	1300	1600
	Mean (m)	1100	1400	1700	1000	1300	1600

 Table 4-19 Predicted unweighted SPL_{peak} impact ranges for very high-frequency cetaceans using criteria from Southall et al. (2019) for maximum hammer blow energies

Subacoustech Environmental Ltd. Document Ref: P260R0102

Very high-frequency cetaceans		Location ID1			Location ID5		
(VHF) (soft s	start)	300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ
	Area (km ²)	0.03	0.04	0.06	0.02	0.04	0.06
PTS (Impulsive)	Max (m)	90	110	140	90	110	140
(202 dB re 1 uPa)	Min (m)	90	110	140	90	110	130
	Mean (m)	90	110	140	90	110	140
	Area (km ²)	0.14	0.21	0.33	0.13	0.19	0.3
I I S (Impulsive) Unwtd SPL _{peak} (196 dB re 1 uPa)	Max (m)	210	260	330	200	250	310
	Min (m)	210	260	320	200	250	310
	Mean (m)	210	260	330	200	250	310

 Table 4-20 Predicted unweighted SPL_{peak} impact ranges for very high-frequency cetaceans using criteria from Southall et al. (2019) for soft start hammer blow energies

Very high-frequency	/ cetaceans	L	ocation ID	1	Location ID5			
(VHF)		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ	
Sequence 2 - PTS	Area (km ²)	< 0.01	< 0.01	0.4	< 0.01	< 0.01	0.04	
(Impulsive)	Max (m)	< 100	< 100	410	< 100	< 100	130	
Weighted SELcum	Min (m)	< 100	< 100	310	< 100	< 100	100	
(155 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	360	< 100	< 100	110	
Sequence 2 - TTS	Area (km ²)	460	620	820	310	430	580	
(Impulsive)	Max (m)	13000	15000	18000	11000	14000	16000	
Weighted SEL _{cum}	Min (m)	11000	13000	14000	8600	10000	12000	
(140 dB re 1 µPa ² s)	Mean (m)	12000	14000	16000	9900	12000	14000	
Sequence 3 - PTS	Area (km ²)	< 0.01	< 0.01	1.0	< 0.01	< 0.01	0.1	
(Impulsive)	Max (m)	< 100	< 100	670	< 100	< 100	210	
Weighted SEL _{cum}	Min (m)	< 100	< 100	460	< 100	< 100	140	
(155 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	570	< 100	< 100	180	
<u>Sequence 3 - TTS</u> (Impulsive) Weighted SEL _{cum}	Area (km ²)	570	770	1000	390	540	730	
	Max (m)	15000	18000	21000	13000	16000	19000	
	Min (m)	12000	13000	15000	9100	11000	12000	
(140 dB re 1 µPa ² s)	Mean (m)	13000	16000	18000	11000	13000	15000	

Table 4-21 Predicted very high-frequency cetacean weighted SEL_{cum} impact ranges (impulsive) using criteria from Southall et al. (2019) assuming a fleeing speed of 1.5 ms⁻¹ for the two piling sequences

Very high-frequent	cy cetaceans	Lo	cation ID1		L	ocation ID	5
(VHF)		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Sequence 2 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(173 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Sequence 2 - TTS	Area (km ²)	0.02	1.3	7.6	< 0.01	0.19	2.6
(Non-impulsive)	Max (m)	110	710	1700	< 100	290	1000
Weighted SELcum	Min (m)	< 100	560	1400	< 100	210	810
(153 dB re 1 µPa ² s)	Mean (m)	< 100	630	1600	< 100	240	900
Sequence 3 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(173 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Sequence 3 - TTS (Non-impulsive) Weighted SEL _{cum}	Area (km ²)	0.08	2.6	12	0.01	0.42	4.1
	Max (m)	210	1000	2200	< 100	430	1300
	Min (m)	120	770	1700	< 100	290	970
(153 dB re 1 µPa ² s)	Mean (m)	160	910	2000	< 100	370	1100

 Table 4-22 Predicted very high-frequency cetacean weighted SEL_{cum} impact ranges (non-impulsive) using criteria from Southall et al. (2019) assuming a fleeing speed of 1.5 ms⁻¹ for the two piling sequences

Phocid carnivores in	water (PCW)	L	ocation ID	1	Location ID5		
(maximum energy)		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
	Area (km ²)	0.01	0.01	0.02	0.01	0.01	0.02
PIS (Impulsive)	Max (m)	50	70	80	50	60	80
(218 dB re 1 uPa)	Min (m)	50	60	80	< 50	60	80
	Mean (m)	50	70	80	50	60	80
	Area (km ²)	0.04	0.07	0.11	0.04	0.07	0.1
Unwtd SPL _{peak}	Max (m)	120	150	190	120	150	180
	Min (m)	120	150	190	110	150	180
	Mean (m)	120	150	190	120	150	180

 Table 4-23 Predicted unweighted SPL_{peak} impact ranges for phocid carnivores in water using criteria

 from Southall et al. (2019) for maximum hammer blow energies

Phocid carnivores in water (PCW)		Location ID1			Location ID5		
(soft start)		300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PIS (Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
(218 dB re 1 µPa)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
I I S (Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
(212 dB re 1 μPa)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50

 Table 4-24 Predicted unweighted SPL_{peak} impact ranges for phocid carnivores in water using criteria

 from Southall et al. (2019) for soft start hammer blow energies

Dhaaid aarnivaraa in	water (DCM)	L	ocation ID	1	L	ocation ID	5
		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Sequence 2 - PTS	Area (km ²)	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
(Impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(185 dB re 1 µPa²s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Sequence 2 - TTS	Area (km ²)	330	470	630	220	310	440
(Impulsive) Weighted SEL _{cum} (170 dB re 1 µPa ² s)	Max (m)	11000	13000	16000	9400	11000	14000
	Min (m)	9300	11000	13000	7200	8700	10000
	Mean (m)	10000	12000	14000	8300	10000	12000
Sequence 3 - PTS	Area (km ²)	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01
(Impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(185 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Sequence 3 - TTS	Area (km ²)	420	580	775	270	400	550
(Impulsive) Weighted SEL _{cum}	Max (m)	13000	15000	18000	11000	14000	16000
	Min (m)	10000	12000	13000	7700	9200	11000
(170 dB re 1 µPa²s)	Mean (m)	12000	14000	16000	9300	11000	13000

Table 4-25 Predicted phocid carnivores in water weighted SEL_{cum} impact ranges (impulsive) using criteria from Southall et al. (2019) assuming a fleeing speed of 1.5 ms⁻¹ for the two piling sequences

Phoeid carnivores in water (PCW)		L	ocation ID	1	Location ID5		
Phoeid carnivores in		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Sequence 2 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SELcum	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(201 dB re 1 µPa²s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Sequence 2 - TTS	Area (km ²)	0.16	3.1	12	0.02	0.71	4.9
(Non-impulsive)	Max (m)	270	1100	2200	< 100	540	1400
Weighted SEL _{cum} (181 dB re 1 µPa ² s)	Min (m)	200	890	1800	< 100	420	1100
	Mean (m)	230	990	2000	< 100	480	1300
Sequence 3 - PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
Weighted SELcum	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(201 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
<u>Sequence 3 - TTS</u> (Non-impulsive) Weighted SEL _{cum} (181 dB re 1 μPa ² s)	Area (km ²)	0.5	5.5	19	0.04	1.3	7.4
	Max (m)	480	1500	2700	130	750	1700
	Min (m)	310	1100	2200	< 100	530	1300
	Mean (m)	400	1300	2500	110	650	1500

Table 4-26 Predicted phocid carnivores in water weighted SEL_{cum} impact ranges (non-impulsive) using criteria from Southall et al. (2019) assuming a fleeing speed of 1.5 ms⁻¹ for the two piling sequences

4.3 Fish

4.3.1 Popper et al. (2014) impact ranges

Table 4-27 to Table 4-32 present the impact ranges for fish for the Popper *et al.* (2014) criteria, covering unweighted SPL_{peak} and SEL_{cum} metrics for all both piling sequences (Table 3-3). All fleeing calculations have assumed both a receptor fleeing at a constant rate of 1.5 ms⁻¹ and a stationary receptor. As before ranges smaller than 50 m for SPL_{peak} and 100 m for SEL_{cum} have not been presented.

The ranges calculated for the Popper *et al.* (2014) criteria are no greater than 400 m, with many, especially the SEL_{cum} criteria, being less than 100 m. The exceptions were ranges modelled for TTS, where the largest values predicted were when considering the largest blow energy, with impact ranges of between 16 and 18 km depending on the piling ramp up scenario. Stationary animal SEL_{cum} calculations see the TTS impact ranges increase to 33 km.

Also, add	litional modelling w	as carried out for	SELss noise le	evels for the	unweighted,	cumulative Popper
et al. (20	14) criteria, these a	are presented in A	Appendix A.			

Fish - SPL _{peak}		Location ID1			Location ID5		
(maximum energy)		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Injury (fish: no swim	Area (km ²)	0.03	0.05	0.08	0.03	0.05	0.08
bladder)	Max (m)	100	130	170	100	130	160
unweighted SPL _{peak} (213 dB re 1 µPa)	Min (m)	100	130	160	100	130	160
	Mean (m)	100	130	170	100	130	160
Injury (fish: with swim	Area (km ²)	0.18	0.29	0.45	0.17	0.27	0.42
bladder)	Max (m)	240	310	380	230	290	370
unweighted SPL _{peak} (207 dB re 1 µPa)	Min (m)	240	310	380	230	290	370
	Mean (m)	240	310	380	230	290	370

Table 4-27 Predicted unweighted SPLpeak impact ranges for fish using criteria from Popper et al.(2014) for maximum hammer blow energies

Fish - SPL _{peak}		Location ID1			Location ID5		
(soft start)		300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ
Injury (fish: no swim bladder) unweighted SPL _{peak} (213 dB re 1 µPa)	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Injury (fish: with swim	Area (km ²)	0.01	0.01	0.01	0.01	0.01	0.01
bladder)	Max (m)	50	60	70	< 50	50	70
unweighted SPL _{peak} (207 dB re 1 µPa)	Min (m)	< 50	60	70	< 50	50	70
	Mean (m)	50	60	70	< 50	50	70

Table 4-28 Predicted unweighted SPLpeak impact ranges for fish using criteria from Popper et al.(2014) for soft start hammer blow energies

Fish - Fleeing - SEL _{cum}		Location ID1			Location ID5		
(Sequence	2)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mortality (fish: ho	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
($> 210 \text{ dB re } 1 \text{ uB} 2^2 \text{c}$)	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(> 219 db le 1 µl a 3)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Recoverable injury	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(fish: no swim	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
bladder) SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(> 216 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Mortality (fish: swim	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
bladder not involved	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
in hearing) SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(210 dB re 1 µPa²s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Mortality (fish: swim	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
bladder involved in	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
hearing) SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(207 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Recoverable injury	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(fish: with swim	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
bladder) SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(203 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
	Area (km ²)	470	640	830	320	440	600
TTS (all fish) SEL _{cum}	Max (m)	13000	16000	18000	11000	14000	16000
(186 re 1 µPa ² s)	Min (m)	11000	13000	14000	8700	10000	12000
	Mean (m)	12000	14000	16000	10000	12000	14000

Table 4-29 Predicted unweighted SELcum impact ranges for fish using criteria from Popper et al.(2014) assuming a fleeing speed of 1.5 ms⁻¹ for piling sequence 2

Fish - Fleeing - SEL _{cum}		L	ocation ID	1	Location ID5		
(Sequence	3)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Martality (fish, as	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mortality (fish: no	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
($> 210 dP ro 1 uPo^{2}c$)	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(> 219 dB le 1 µFa s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Recoverable injury	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(fish: no swim	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
bladder) SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(> 216 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Mortality (fish: swim	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
bladder not involved	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
in hearing) SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(210 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Mortality (fish: swim	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
bladder involved in	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
hearing) SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(207 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
Recoverable injury	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(fish: with swim	Max (m)	< 100	< 100	< 100	< 100	< 100	< 100
bladder) SEL _{cum}	Min (m)	< 100	< 100	< 100	< 100	< 100	< 100
(203 dB re 1 µPa ² s)	Mean (m)	< 100	< 100	< 100	< 100	< 100	< 100
	Area (km ²)	580	780	1000	400	550	740
TTS (all fish) SELcum	Max (m)	15000	18000	21000	14000	16000	19000
(186 re 1 µPa ² s)	Min (m)	12000	13000	15000	9200	11000	12000
	Mean (m)	14000	16000	18000	11000	13000	15000

Table 4-30 Predicted unweighted SEL_{cum} impact ranges for fish using criteria from Popper et al.(2014) assuming a fleeing speed of 1.5 ms⁻¹ for piling sequence 3

Fish - Stationary	- SEL _{cum}	Location ID1			Location ID5		
(Sequence	2)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Martality (fish, as	Area (km ²)	0.29	0.46	0.73	0.27	0.44	0.7
Wortality (fish: no	Max (m)	310	390	490	300	380	480
($> 210 dP ro 1 uPo^{2}c$)	Min (m)	300	380	480	290	370	470
(> 219 ub le 1 µFa S)	Mean (m)	310	390	490	300	380	480
Recoverable injury	Area (km ²)	0.73	1.2	1.8	0.7	1.1	1.7
(fish: no swim	Max (m)	490	620	770	480	600	750
bladder) SEL _{cum}	Min (m)	480	610	760	470	590	740
(> 216 dB re 1 µPa ² s)	Mean (m)	490	620	770	480	600	750
Mortality (fish: swim	Area (km ²)	4.7	7.4	11	4.3	6.7	10
bladder not involved	Max (m)	1200	1500	1900	1200	1500	1800
in hearing) SEL _{cum}	Min (m)	1200	1500	1900	1200	1500	1800
(210 dB re 1 µPa ² s)	Mean (m)	1200	1500	1900	1200	1500	1800
Mortality (fish: swim	Area (km ²)	11	18	26	10	16	23
bladder involved in	Max (m)	1900	2400	2900	1800	2200	2700
hearing) SEL _{cum}	Min (m)	1900	2400	2900	1800	2200	2700
(207 dB re 1 µPa ² s)	Mean (m)	1900	2400	2900	1800	2200	2700
Recoverable injury	Area (km ²)	35	52	75	30	44	62
(fish: with swim	Max (m)	3400	4100	5000	3100	3800	4500
bladder) SEL _{cum}	Min (m)	3300	4100	4900	3100	3700	4400
(203 dB re 1 µPa ² s)	Mean (m)	3400	4100	4900	3100	3700	4400
	Area (km ²)	1100	1400	1700	880	1100	1300
TTS (all fish) SEL _{cum}	Max (m)	20000	23000	25000	18000	21000	23000
(186 re 1 µPa ² s)	Min (m)	18000	19000	21000	15000	17000	18000
	Mean (m)	19000	21000	23000	17000	19000	21000

Table 4-31 Predicted unweighted SELimpact ranges for fish using criteria from Popper et al.(2014) assuming a stationary receptor for piling sequence 2

Fich Stationary CEI			a a a ti a m ID	4	Location ID5		
Fish - Stationary		L	ocation ID		L	ocation ID	5
(Sequence	3)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Mortality (fight po	Area (km ²)	1.1	1.8	2.8	1.1	1.7	2.6
swim bladdor) SEI	Max (m)	600	760	950	590	740	920
$(> 210 \text{ dP ro } 1 \text{ uPo}^{2}\text{c})$	Min (m)	590	750	940	580	730	910
(> 219 UB TE T µFa S)	Mean (m)	600	760	950	590	740	920
Recoverable injury	Area (km ²)	2.9	4.5	6.9	2.7	4.2	6.3
(fish: no swim	Max (m)	960	1200	1500	930	1200	1400
bladder) SEL _{cum}	Min (m)	950	1200	1500	920	1200	1400
(> 216 dB re 1 µPa ² s)	Mean (m)	960	1200	1500	930	1200	1400
Mortality (fish: swim	Area (km ²)	17	26	38	15	22	32
bladder not involved	Max (m)	2300	2900	3500	2200	2700	3200
in hearing) SEL _{cum}	Min (m)	2300	2900	3500	2200	2700	3200
(210 dB re 1 µPa ² s)	Mean (m)	2300	2900	3500	2200	2700	3200
Mortality (fish: swim	Area (km ²)	39	57	82	33	47	67
bladder involved in	Max (m)	3500	4300	5200	3300	3900	4700
hearing) SEL _{cum}	Min (m)	3500	4200	5100	3200	3900	4600
(207 dB re 1 µPa ² s)	Mean (m)	3500	4300	5100	3200	3900	4600
Recoverable injury	Area (km ²)	110	150	510	85	120	160
(fish: with swim	Max (m)	5900	7100	8300	5300	6300	7300
bladder) SEL _{cum}	Min (m)	5700	6800	8000	5200	6100	7000
(203 dB re 1 µPa ² s)	Mean (m)	5800	6900	8100	5200	6200	7200
	Area (km ²)	2000	2400	2800	1600	1900	2300
TTS (all fish) SEL _{cum}	Max (m)	28000	30000	33000	26000	29000	32000
(186 re 1 µPa ² s)	Min (m)	23000	25000	26000	20000	22000	23000
	Mean (m)	25000	28000	30000	23000	25000	27000

Table 4-32 Predicted unweighted SELimpact ranges for fish using criteria from Popper et al.(2014) assuming a stationary receptor for piling sequence 3

5 Other noise sources

Although impact piling is expected to be the primary noise source during offshore wind farm construction and development (Bailey et al., 2014), several other anthropogenic noise sources may be present. Each of these has been considered, and its impact assessed, in this section.

Table 5-1 provides a summary of the various noise producing sources, aside from impact piling, that are expected to be present during the construction and operation of Teesside A.

Activity	Description
Cable laying	Noise from the cable laying vessel and any other associated noise during the
	offshore cable installation.
Rock placement	Potentially required on site for installation of offshore cables (Cable crossings
	and cable protection) and scour protection around foundation structures.
Trenching	Plough trenching may be required during offshore cable installation.
Vessel noise	Jack-up barges for piling substructure and WTG installation. Other large and
	medium sized vessels on site to carry out other construction tasks, and anchor
	handling. Other small vessels for crew transport and maintenance on site.
Operational WTG	Noise transmitted through the water from operational WTG. The project design
	envelope gives turbines with rotor diameters of up to 280 m.

Table 5-1 Summary of the possible noise making activities at Teesside A other than impact piling

The NPL Good Practice Guide 133 for underwater noise measurements (Robinson *et al.*, 2014) indicates that under certain circumstances, a simple modelling approach may be considered acceptable. Such an approach has been used for these noise sources, which are variously either quiet compared to impact piling (e.g. cable laying, rock placement) or where detailed modelling would imply an unwarranted accuracy (e.g. where data is limited such as with large operational WTG noise). The high-level overview of modelling that has been presented here is considered sufficient and it is considered that there would be little benefit in using a more detailed model at this stage. The limitations of this approach are noted, including the lack of frequency or bathymetry dependence.

5.1 Noise making activities

For the purposes of identifying the greatest noise impacts, approximate subsea noise levels have been predicted using a simple modelling approach based on measured data from Subacoustech Environmental's own underwater noise measurement database, scaled to relevant parameters for the site and specific noise source. Predicted source levels for the construction activities are presented in Table 5-2 along with a summary of the number of datasets used in each case. As previously, all SEL_{cum} criteria use the same assumptions as presented in section 3.2.2 and ranges smaller than 50 m (single strike) and 100 m (cumulative) have not been presented. It should be noted that this modelling approach does not take bathymetry or other environmental conditions into account, and as such can be applied to any location in the Teesside A project area. Operational WTGs have been assessed separately in section 5.2.

Source	Estimated unweighted source level	Comments
Cable laying	171 dB re 1 μPa @ 1 m (RMS)	Based on 11 datasets from a pipe laying vessel measuring 300 m in length; this is considered a worst-case noise source for cable laying operations
Rock placement	172 dB re 1 µPa @ 1 m (RMS)	Based on four datasets from rock placement vessel 'Rollingstone.'
Trenching	172 dB re 1 µPa @ 1 m (RMS)	Based on three datasets of measurements from trenching vessels more than 100 m in length
Vessel noise (large)	171 dB re 1 µPa @ 1 m (RMS)	Based on five datasets of large vessels including container ships, FPSOs and other vessels more than 100 m in length. Vessel speed assumed as 12 knots.
Vessel noise (medium)	164 dB re 1 µPa @ 1 m (RMS)	Based on three datasets of moderate sized vessels less than 100 m in length. Vessel speed assumed as 12 knots.

 Table 5-2 Summary of the estimated unweighted source levels for the different construction noise

 sources considered

Table 5-3 and Table 5-4 summarise the predicted impact ranges for these noise sources. It is worth noting that the Southall *et al.* (2019) and Popper *et al.* (2014) criteria give different criteria for non-impulsive or continuous noise sources compared to impulsive noise (see sections 2.2 and 2.4); all sources in this section are considered non-pulse or continuous-type.

Given the modelled impact ranges, any marine mammal would have to remain in close proximity (in most cases less than 50 m) from the source continuously for 24 hours to be exposed to levels sufficient to induce PTS as per Southall *et al.* (2019); in most hearing groups, the noise levels are low enough that there is negligible risk. For fish, there is a low to negligible risk of any injury or TTS, in line with guidance for continuous noise sources in Popper *et al.* (2014) as presented in Table 2-11. All sources presented here are much quieter than those presented for impact piling in section 4.

Southall <i>et al</i> . (2019)		Cable laying	Rock placement	Trenching	Vessels (large)	Vessels (medium)
DTO	199 dB (LF SEL _{cum})	< 100 m	< 100 m	< 100 m	< 100 m	< 100 m
	198 dB (HF SEL _{cum})	< 100 m	< 100 m	< 100 m	< 100 m	< 100 m
FIS	173 dB (VHF SEL _{cum})	< 100 m	< 100 m	< 100 m	< 100 m	< 100 m
	201 dB (PCW SEL _{cum})	< 100 m	< 100 m	< 100 m	< 100 m	< 100 m
	179 dB (LF SEL _{cum})	< 100 m	< 100 m	< 100 m	< 100 m	< 100 m
тте	178 dB (HF SEL _{cum})	< 100 m	< 100 m	< 100 m	< 100 m	< 100 m
TTS	153 dB (VHF SEL _{cum})	< 100 m	990 m	< 100 m	< 100 m	< 100 m
	181 dB (PCW SELcum)	< 100 m	< 100 m	< 100 m	< 100 m	< 100 m

 Table 5-3 Summary of the impact ranges for the different noise sources related to construction using the non-impulsive criteria from Southall et al. (2019) for marine mammals

Popper <i>et al</i> . (2014)	Cable laying	Rock placement	Trenching	Vessels (large)	Vessels (medium)
Recoverable injury 170 dB (48 hours) Unweighted SPL _{RMS}	< 50 m	< 50 m	< 50 m	< 50 m	< 50 m
TTS 158 dB (12 hours) Unweighted SPL _{RMS}	< 50 m	< 50 m	< 50 m	< 50 m	< 50 m

 Table 5-4 Summary of the impact ranges from Popper et al. (2014) for shipping and continuous noise, covering the different noise sources related to construction for species of fish (swim bladder involved in hearing)

5.2 Operational WTG noise

It is believed that the main source of underwater noise from operational WTGs will be mechanically generated vibration from the rotating machinery in the turbines, which is transmitted into the sea through the structure of the turbine tower, pile and foundations (Nedwell *et al.*, 2003). Noise levels generated above the water surface are low enough that no significant airborne sound will pass from the air to the water.

	Gunfloot Sands	Gunfloot Sands
A summary of operational WTG where measurements have be	een collected is give	n in Table 5-5.
The project design envelope for Teesside A gives the maximum	n potential WTG roto	r diameter as 280 m.

Wind farm	Lynn	Inner Dowsing	Gunfleet Sands 1 & 2	Gunfleet Sands 3
Type of turbine	Siemens	Siemens	Siemens	Siemens
used	SWT-3.6-107	SWT-3.6-107	SWT-3.6-107	SWT-6.0-120
Number of turbines	27	27	48	2
Rotor diameter	107 m	107 m	107 m	120 m
Water depths	6 to 8 m	6 to 14 m	0 to 15 m	5 to 12 m
Representative sediment type	e Sandy gravel / Sandy gravel / muddy sandy gravel gravel gravel		Sand / muddy sand / muddy sandy gravel	Sand / muddy sand / muddy sandy gravel
Turbine separation (representative)	500 m	500 m	890 m	435 m

Table 5-5 Characteristics of measured operational wind farms used as a basis for modelling

The estimation of the effects of operational noise in these situations has two features that make it harder to assess compared with noise sources such as impact piling. Primarily, the problem is one of level; noise measurements made at many wind farms have demonstrated that the operational noise produced was at such a low level that it was difficult to measure relative to background noise (Cheesman, 2016) at distances of a few hundred metres. Also, the multiple turbines of an offshore wind farm could be considered as an extended, distributed noise source, as opposed to a "point source" as would be appropriate for pile driving at a single location, for example. The measurement techniques used at the sites above have dealt with these issues by considering the operational noise spectra in terms of levels within and on the edge of the wind farm (but relatively close to the turbines, so that some noise above background could be detected).

The considered turbine size for Teesside A is larger than those for which data is available, and as such, estimations of a scaling factor must be conservative to minimise the risk of underestimating the noise. However, it is recognised that the available data on which to base the scaling factor is limited and the extrapolation that must be made is significant.

The operational source levels (as SPL_{RMS}) for the measured sites are given in Table 5-6 (Cheesman, 2016), with an estimated source level for Teesside A in the bottom row. To predict operational WTG

noise levels, the measured levels at each of the sites have been taken and then a linear correction factor has been included to scale up the source levels. A linear fit was applied to the data as this is the most conservative extrapolation, leading to the highest, and thus worst-case, estimation of source level noise from the larger 280 m diameter rotor WTGs. This results in an estimated source level of 162.7 dB SPL_{RMS} @ 1 m, 16.7 dB higher than the 120 m diameter rotor WTG, the largest for which noise data was available.

Site	Unweighted source level
Lynn (107 m)	141 dB re 1 µPa (RMS) @ 1 m
Inner Dowsing (107 m)	142 dB re 1 µPa (RMS) @ 1 m
Gunfleet Sands 1 & 2 (107 m)	145 dB re 1 µPa (RMS) @ 1 m
Gunfleet Sands 3 (120 m)	146 dB re 1 µPa (RMS) @ 1 m
Teesside A (280 m)	162.7 dB re 1 µPa (RMS) @ 1 m

 Table 5-6 Measured operational WTG noise taken at operational wind farms, and the predicted source level for the maximum turbine size considered at Teesside A

A summary of the predicted impact ranges is given in Table 5-7 and Table 5-8. The SEL_{cum} criteria use the same assumptions as presented in section 3.2.2m and ranges smaller than 50 m (single strike) and 100 m (cumulative) have not been presented. The operational WTG source is considered a non-impulsive sound by Southall *et al.* (2019) and a continuous source by Popper *et al.* (2014).

Southall e	t al. (2019)	Operational WTG (280 m)		
	199 dB (LF SEL _{cum})	< 100 m		
DTS	198 dB (HF SEL _{cum})	< 100 m		
FIS	173 dB (VHF SEL _{cum})	< 100 m		
	201 dB (PCW SEL _{cum})	< 100 m		
	179 dB (LF SEL _{cum})	< 100 m		
тте	178 dB (HF SEL _{cum})	< 100 m		
113	153 dB (VHF SEL _{cum})	< 100 m		
	181 dB (PCW SEL _{cum})	< 100 m		

Table 5-7 Summary of the impact ranges for operational WTGs using the non-impulsive noise criteriafrom Southall et al. (2019) for marine mammals

Popper <i>et al</i> . (2014)	Operational WTG (280 m)
Recoverable injury 170 dB (48 hours) Unweighted SPL _{RMS}	< 50 m
TTS 158 dB (12 hours) Unweighted SPL _{RMS}	< 50 m

 Table 5-8 Summary of the impact ranges for shipping and continuous noise from Popper et al. (2014)

 for operational WTGs for species of fish (swim bladder involved in hearing)

The results show that, for operational WTGs, any injury risk is minimal. Taking both sets of results into account (operational WTG noise and other noise sources related to construction, see section 5.1), and comparing them to the impact piling results in section 4, it is clear that noise from impact piling results in much greater levels and impact ranges, and hence should be considered the activity which has the potential to have the greatest effect during the construction and lifecycle of Teesside A.

6 Summary and conclusions

Underwater noise modelling was carried out by NPL in 2013 to assess the effects of impact piling noise on fish and marine mammals from the construction of the Teesside A offshore wind farm, in the Dogger Bank development area. In the time since the original modelling was completed, new noise thresholds and criteria have been developed by Southall *et al.* (2019) for marine mammals and Popper *et al.* (2014) for fish. To obtain impact ranges for these new criteria, additional modelling has been carried out by Subacoustech Environmental.

The modelling undertaken by NPL utilised an energy flux solution, and the model used is not openly available. Subacoustech have used a different but comparable method using the semi-empirical INSPIRE model. This additional modelling has sought to be compatible with and provide equivalent results to the original modelling. A conservative fit to the data was used so that levels predicted along the worst-case transect match with the highest levels reported originally, especially at the greatest distances. Overall, there was a good level of correlation between the two modelling result datasets.

In addition to modelling to the new criteria, the effects of two piling hammer blow energies greater than that considered originally have been assessed (4000 kJ and 5400 kJ).

The modelling results using the new metrics showed that, using the Southall *et al.* (2019) SPL_{peak} criteria, ranges are largely within a few hundred metres, with only the TTS ranges for high-frequency cetaceans extending over 1 km. For the SEL_{cum} criteria, larger ranges are predicted, with PTS for LF cetaceans reaching 8.4 km and TTS for LF cetaceans reaching a maximum range of 32 km for the largest hammer blow energies (5400 kJ) and worst-case ramp-up sequence 3. Also, predicted impact ranges for ramp-up sequence 3 (with 12,600 pile strikes) resulted in larger ranges than those predicted for ramp-up sequence 2 (with 5,000 pile strikes).

When considering the Popper *et al.* (2014) criteria, the ranges calculated are no greater than 400 m, with many, especially the SEL_{cum} criteria, being less than 100 m. The exceptions were ranges modelled for TTS, where the largest values predicted were when considering the largest blow energy, with impact ranges of between 16 and 18 km depending on the piling ramp up scenario.

All modelled scenarios using the increased maximum blow energies result in larger impact ranges than with the largest blow energy used in the original report.

Noise sources other than piling have been considered using a high-level, simple modelling approach, including cable laying, rock placement, trenching, vessel noise and operational WTG noise. The predicted noise levels for the other construction noise sources and during WTG operation are well below those predicted for impact piling noise. The risk of any potential injurious effects to fish or marine mammals from these sources are expected to be negligible as the noise emissions from these are very close to, or below, the appropriate injury criteria at the source of the noise.

References

- 1. Bailey H, Brookes K L, Thompson P M (2014). Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosystems 2014, 10:8.
- 2. Blix A S and Folkow L P (1995). *Daily energy expenditure in free living minke whales.* Acta Physiol. Scand., 153:61-66.
- 3. Carlson T J, Hastings M C, Popper A N (2007). *Memorandum Update on recommendations for revised interim sound exposure criteria for fish during pile driving activities.* Sent to California Dept. of Trans. And Washington Dept. of Trans.
- Cheesman S (2016). Measurement of operational wind turbine noise in UK waters. In Popper A N, Hawkins A (eds.) The effects of noise on aquatic life, II. Advances in experimental medicine and biology. Vol. 875, pp 153-160. DOI 10.1007/975-1-4939-2981-8_81.
- Dahl P H, de Jong C A F, Popper A N (2015). The underwater sound field from impact pile driving and its potential effects on marine life. Acoustics Today, Spring 2015, Volume 11, Issue 2.
- 6. Goertner J F (1978). *Dynamical model for explosion injury to fish.* Naval Surface Weapons Center, White Oak Lab, Silver Spring, MD. Report No. NSWC/WOL/TR-76-155.
- 7. Goertner J F, Wiley M L, Young G A, McDonald W W (1994). *Effects of underwater explosions on fish without swim bladders*. Naval Surface Warfare Center. Report No. NSWC/TR-88-114.
- Halvorsen M B, Casper B M, Woodley C M, Carlson T J, Popper A N (2011). Predicting and mitigating hydroacoustic impacts on fish from pile installations. NCHRP Research Results Digest 363, Project 25-28, National cooperative Highway Research Program, Transportation Research Board, National Academy of Sciences, Washington D.C.
- Halvorsen M B, Casper B C, Matthews D, Carlson T J, Popper A N (2012). Effects of exposure to pile driving sounds on the lake sturgeon, Nile tilapia, and hogchoker. Proc. Roy. Soc. B 279: 4705-4714.
- Hastie G, Merchand N D, Götz T, Russell D J F, Thompson P, Janik V M (2019). Effects of impulsive noise on marine mammals: investigating range-dependent risk. DOI: 10.1002/eap.1906.
- 11. Hastings M C, Popper A N (2005). *Effects of sound on fish.* Report to the California Department of Transport, under Contract No. 43A01392005, January 2005.
- 12. Hawkins A D, Roberts L, Cheesman S (2014). *Responses of free-living coastal pelagic fish to impulsive sounds.* J. Acoust. Soc. Am. 135: 3101-3116.
- Hirata K (1999). Swimming speeds of some common fish. National Maritime Research Institute (Japan). Data sourced from Iwai T, Hisada M (1998). Fishes – Illustrated Book of Gakken (in Japanese). Accessed on 8th March 2017 at http://www.nmri.go.jp/eng/khirata/fish/general/ speed/speede/htm
- Lucke K, Lepper P A, Blanchet M (2009). Temporary shift in masked hearing thresholds in a harbour porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. J. Acoust. Soc. Am. 125(6), 4060-4070.

- 15. McCauley R D, Fewtrell K, Duncan A J, Jenner C, Jenner M-N, Penrose J D, Prince R I T, Adhitya A, Murdoch J, McCake K (2000). *Marine seismic survey A study of environmental implications*. Appea Journal, pp 692-708.
- 16. National Marine Fisheries Service (NMFS) (2018). Revisions to: Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing (version 2.0): Underwater thresholds for onset of permanent and temporary threshold shifts. U.S. Dept. of Commer., NOAA. NOAA Technical Memorandum NMFS-OPR-59.
- 17. Nedwell J R, Langworthy J, Howell D (2003). Assessment of subsea noise and vibration from offshore wind turbines and its impact on marine wildlife. Initial measurements of underwater noise during construction of offshore wind farms, and comparison with background noise. Subacoustech Report Ref. 544R0423, published by COWRIE, May 2003.
- Otani S, Naito T, Kato A, Kawamura A (2000). *Diving behaviour and swimming speed of a free-ranging harbour porpoise (Phocoena phocoena).* Marine mammal science, Volume 16, Issue 4, pp 811-814, October 2000.
- 19. Pearson W H, Skalski, J R, Malme C I (1992). *Effects of sounds from a geophysical survey device on behaviour of captive rockfish (Sebastes spp.)*. Can. J. Fish. Aquat. Sci., 49, pp. 1343-1355.
- 20. Popper A N, Carlson T J, Hawkins A D, Southall B D, Gentry R L (2006). Interim criteria for injury in fish exposed to a pile driving operation. A white paper, available from http://www.wsdot.wa.gov/NR/rdonlyres/84A6313A-9297-42C9-BFA6-750A691E1DB3/0/BA_ PileDrivingInterimCriteria.pdf
- Popper A N, Hawkins A D, Fay R R, Mann D A, Bartol S, Carlson T J, Coombs S, Ellison W T, Gentry R L, Halvorsen M B, Løkkeborg S, Rogers P H, Southall B L, Zeddies D G, Tavolga W N (2014). Sound Exposure Guidelines for Fishes and Sea Turtles. Springer Briefs in Oceanography, DOI 10. 1007/978-3-319-06659-2.
- 22. Robinson S P, Lepper P A, Hazelwood R A (2014). *Good practice guide for underwater noise measurement*. National Measurement Office, Marine Scotland, The Crown Estate. NPL Good Practice Guide No. 133, ISSN: 1368-6550.
- Southall B L, Bowles A E, Ellison W T, Finneran J J, Gentry R L, Green Jr. C R, Kastak D, Ketten D R, Miller J H, Nachtigall P E, Richardson W J, Thomas J A, Tyack P L (2007). *Marine mammal noise exposure criteria: Initial scientific recommendations*. Aquatic Mammals, 33 (4), pp. 411-509.
- Southall B L, Finneran J J, Reichmuth C, Nachtigall P E, Ketten D R, Bowles A E, Ellison W T, Nowacek D P, Tyack P L (2019). *Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects.* Aquatic Mammals 2019, 45(20, 125-232) DOI 10.1578/AM.45.2.2019.125.
- 25. Theobald P, Pangerc T, Wang L, Lepper P (2013). Underwater noise modelling to support the Dogger Bank Wind Farm Environmental Impact Assessment for Dogger Bank Teesside A and Dogger Bank Teesside B. NPL Report AIR (RES) 066, 28th February 2013.
- 26. Weston D (1976). *Propagation in water with uniform sound velocity by variable-depth lossy bottom.* Journal of Sound and Vibration, 49, pp. 473-483.

Appendix A Additional impact ranges

Low-frequency cetaceans (LF)		Location ID1			Location ID5		
(maximum en	ergy)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
PTS	Area (km ²)	0.07	0.12	0.19	0.07	0.12	0.19
(Impulsive)	Max (m)	160	200	250	150	200	250
Weighted SEL _{ss}	Min (m)	150	200	250	150	190	250
(183 dB re 1 µPa ² s)	Mean (m)	160	200	250	150	200	250
TTS	Area (km ²)	8.5	13	20	7.7	12	17
(Impulsive)	Max (m)	1700	2100	2500	1600	1900	2400
Weighted SELss	Min (m)	1600	2000	2500	1600	1900	2400
(168 dB re 1 µPa ² s)	Mean (m)	1700	2100	2500	1600	1900	2400
PTS	Area (km ²)	< 0.01	0.01	0.01	< 0.01	< 0.01	0.01
(Non-impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(199 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS	Area (km ²)	0.27	0.44	0.7	0.26	0.42	0.67
(Non-impulsive)	Max (m)	300	380	470	290	370	460
Weighted SELss	Min (m)	300	380	470	290	370	460
(179 dB re 1 µPa ² s)	Mean (m)	300	380	470	290	370	460

The following tables collect single strike SEL impact ranges for Southall *et al.* (2019) (Table A 1 to Table A 8) and Popper *et al.* (2014) (Table A 9 and Table A 10) criteria.

Table A 1 Predicted low-frequency cetacean weighted SELss impact ranges using criteria fromSouthall et al. (2019) for maximum blow energies

Low-frequency cetaceans (LF)		Location ID1			Location ID5		
(soft star	t)	300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ
PTS	Area (km ²)	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(183 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS	Area (km ²)	0.27	0.43	0.68	0.26	0.41	0.65
(Impulsive)	Max (m)	300	370	470	290	360	460
Weighted SELss	Min (m)	300	370	470	290	360	460
(168 dB re 1 µPa ² s)	Mean (m)	300	370	470	290	360	460
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(199 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS	Area (km ²)	0.01	0.01	0.02	0.01	0.01	0.02
(Non-impulsive)	Max (m)	50	60	80	50	60	80
Weighted SEL _{ss}	Min (m)	< 50	60	80	< 50	60	80
(179 dB re 1 µPa ² s)	Mean (m)	50	60	80	50	60	80

 Table A 2 Predicted low-frequency cetacean weighted SEL_{ss} impact ranges using criteria from

 Southall et al. (2019) for soft start blow energies

		-							
High-frequency ceta	aceans (HF)	L	Location ID1			Location ID5			
(maximum er	nergy)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ		
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(185 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		
TTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(170 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
(Non-impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(198 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		
TTS (Non-impulsive)	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(178 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		

Table A 3 Predicted high-frequency cetacean weighted SELss impact ranges using criteria fromSouthall et al. (2019) for maximum blow energies

High-frequency cetaceans (HE)		L	Location ID1			Location ID5			
(soft star	t)	300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ		
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(185 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		
TTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(170 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
(Non-impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(198 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		
<u>TTS</u> (Non-impulsive)	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(178 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		

Table A 4 Predicted high-frequency cetacean weighted SELss impact ranges using criteria fromSouthall et al. (2019) for soft start blow energies

Very high-frequency	y cetaceans	L	Location ID1			Location ID5			
(VHF) (maximum	n energy)	3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ		
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(155 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		
TTS	Area (km ²)	0.15	0.25	0.39	0.15	0.24	0.38		
(Impulsive)	Max (m)	220	280	360	220	280	350		
Weighted SELss	Min (m)	220	280	350	220	280	350		
(140 dB re 1 µPa²s)	Mean (m)	220	280	360	220	280	350		
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
(Non-impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(173 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		
TTS (Non-impulsive)	Area (km ²)	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.01		
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50		
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50		
(153 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50		

Table A 5 Predicted very high-frequency cetacean weighted SELss impact ranges using criteria fromSouthall et al. (2019) for maximum blow energies

Very high-frequency cetaceans		Location ID1			Location ID5		
(VHF) (soft start)		300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(155 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS	Area (km ²)	< 0.01	0.01	0.01	< 0.01	0.01	0.01
(Impulsive)	Max (m)	< 50	< 50	60	< 50	< 50	60
Weighted SELss	Min (m)	< 50	< 50	60	< 50	< 50	60
(140 dB re 1 µPa²s)	Mean (m)	< 50	< 50	60	< 50	< 50	60
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(173 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
<u>TTS</u> (Non-impulsive) Weighted SEL₅s	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(153 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50

Table A 6 Predicted very high-frequency cetacean weighted SELss impact ranges using criteria fromSouthall et al. (2019) for soft start blow energies

Phocid carnivores in	water (PCW)	Location ID1			Location ID5		
(maximum energy)		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(185 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
TTS	Area (km ²)	0.1	0.16	0.25	0.1	0.15	0.24
(Impulsive)	Max (m)	180	230	280	180	220	280
Weighted SELss	Min (m)	180	220	280	170	220	280
(170 dB re 1 µPa ² s)	Mean (m)	180	230	280	180	220	280
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(Non-impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(201 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
<u>TTS</u> (Non-impulsive) Weighted SEL₅s	Area (km ²)	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.01
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(181 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50

 Table A 7 Predicted phocid carnivores in water weighted SEL_{ss} impact ranges using criteria from

 Southall et al. (2019) for maximum blow energies

Phocid carnivores in water (PCW)		Location ID1			Location ID5			
(soft start)		300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ	
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50	
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50	
(185 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50	
TTS	Area (km ²)	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.01	
(Impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50	
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50	
(170 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50	
PTS	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
(Non-impulsive)	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50	
Weighted SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50	
(201 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50	
<u>TTS</u> (Non-impulsive) Weighted SEL₅s	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50	
	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50	
(181 dB re 1 µPa²s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50	

 Table A 8 Predicted phocid carnivores in water weighted SEL_{ss} impact ranges using criteria from

 Southall et al. (2019) for soft start blow energies

Fish - SEL _{cum}		Location ID1			Location ID5		
(maximum energy)		3000 kJ	4000 kJ	5400 kJ	3000 kJ	4000 kJ	5400 kJ
Mantality (fishes as	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Wortality (fish: no	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
($> 210 dP ro 1 \mu Po^2c$)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(> 219 dB le 1 µFa S)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Recoverable injury	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(fish: no swim	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
bladder) SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(> 216 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Mortality (fish: swim	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
bladder not involved	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
in hearing) SEL _{ss}	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(210 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Mortality (fish: swim	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
bladder involved in	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
hearing) SEL _{ss}	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(207 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Recoverable injury	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(fish: with swim	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
bladder) SEL _{ss} (203 dB re 1 µPa²s)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Area (km ²)	0.16	0.25	0.41	0.15	0.25	0.39
TTS (all fish) SELss	Max (m)	230	290	360	220	280	350
(186 re 1 µPa ² s)	Min (m)	220	290	360	220	280	350
, , , , ,	Mean (m)	230	290	360	220	280	350

Table A 9 Predicted unweighted fish SELss impact ranges using criteria from Popper et al. (2014) formaximum blow energies

Fish - SEL _{cum}		Location ID1			Location ID5		
(soft start)		300 kJ	400 kJ	540 kJ	300 kJ	400 kJ	540 kJ
Martality (fich, as	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Wortality (fish: no	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
($> 210 dP ro 1 \mu Po^{2}c$)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(> 219 ub le 1 µFa S)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Recoverable injury	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(fish: no swim	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
bladder) SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(> 216 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Mortality (fish: swim	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
bladder not involved	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
in hearing) SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(210 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Mortality (fish: swim	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
bladder involved in	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
hearing) SELss	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
(207 dB re 1 µPa ² s)	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
Recoverable injury	Area (km ²)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
(fish: with swim	Max (m)	< 50	< 50	< 50	< 50	< 50	< 50
bladder) SEL _{ss} (203 dB re 1 µPa²s)	Min (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Mean (m)	< 50	< 50	< 50	< 50	< 50	< 50
	Area (km ²)	< 0.01	0.01	0.01	< 0.01	0.01	0.01
TTS (all fish) SEL _{ss}	Max (m)	< 50	< 50	60	< 50	< 50	60
(186 re 1 µPa ² s)	Min (m)	< 50	< 50	60	< 50	< 50	60
	Mean (m)	< 50	< 50	60	< 50	< 50	60

 Table A 10 Predicted unweighted fish SELss impact ranges using criteria from Popper et al. (2014) for soft start blow energies

Report documentation page

- This is a controlled document.
- Additional copies should be obtained through the Subacoustech Environmental librarian.
- If copied locally, each document must be marked "Uncontrolled copy".
- Amendment shall be by whole document replacement.
- Proposals for change to this document should be forwarded to Subacoustech Environmental.

Document No.	Draft	Date	Details of change
P260R0100	01	05/09/2019	Initial writing and internal review
P260R0101	01	13/09/2019	First issue to client
P260R0102	-	28/10/2019	Amendments and additions following client review

Originator's current report number	P260R0102
Originator's name and location	R Barham; Subacoustech Environmental Ltd.
Contract number and period covered	P260; August – October 2019
Sponsor's name and location	Gemma Keenan; HaskoningDHV UK Ltd
Report classification and caveats in use	COMMERCIAL IN CONFIDENCE
Date written	September-October 2019
Pagination	Cover + i + 44
References	26
Report title	Underwater noise modelling at the Teesside A
	offshore wind farm, Dogger Bank
Translation/Conference details (if translation,	
give foreign title/if part of a conference, give	
conference particulars)	
Title classification	Unclassified
Author(s)	R Barham, T Mason
Descriptors/keywords	
Abstract	
Abstract classification	Unclassified; Unlimited distribution

